These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 29870538)
1. fMRI study of the role of glutamate NMDA receptor in the olfactory processing in monkeys. Zhao F; Holahan MA; Wang X; Uslaner JM; Houghton AK; Evelhoch JL; Winkelmann CT; Hines CDG PLoS One; 2018; 13(6):e0198395. PubMed ID: 29870538 [TBL] [Abstract][Full Text] [Related]
2. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation. Zhao F; Wang X; Zariwala HA; Uslaner JM; Houghton AK; Evelhoch JL; Hostetler E; Winkelmann CT; Hines CDG Neuroimage; 2017 Apr; 149():348-360. PubMed ID: 28163142 [TBL] [Abstract][Full Text] [Related]
3. Functional imaging of olfaction by CBV fMRI in monkeys: insight into the role of olfactory bulb in habituation. Zhao F; Holahan MA; Houghton AK; Hargreaves R; Evelhoch JL; Winkelmann CT; Williams DS Neuroimage; 2015 Feb; 106():364-72. PubMed ID: 25498426 [TBL] [Abstract][Full Text] [Related]
4. fMRI study of olfaction in the olfactory bulb and high olfactory structures of rats: Insight into their roles in habituation. Zhao F; Wang X; Zariwala HA; Uslaner JM; Houghton AK; Evelhoch JL; Williams DS; Winkelmann CT Neuroimage; 2016 Feb; 127():445-455. PubMed ID: 26522425 [TBL] [Abstract][Full Text] [Related]
5. Chemosensory processing in children with attention-deficit/hyperactivity disorder. Lorenzen A; Scholz-Hehn D; Wiesner CD; Wolff S; Bergmann TO; van Eimeren T; Lentfer L; Baving L; Prehn-Kristensen A J Psychiatr Res; 2016 May; 76():121-7. PubMed ID: 26926800 [TBL] [Abstract][Full Text] [Related]
6. fMRI study of olfactory processing in mice under three anesthesia protocols: Insight into the effect of ketamine on olfactory processing. Zhao F; Meng X; Lu S; Hyde LA; Kennedy ME; Houghton AK; Evelhoch JL; Hines CDG Neuroimage; 2020 Jun; 213():116725. PubMed ID: 32173412 [TBL] [Abstract][Full Text] [Related]
7. Adenosine A Sun X; Li L; Zhang HY; He W; Wang DR; Huang ZL; Wang YQ Brain Res; 2021 Oct; 1768():147590. PubMed ID: 34310936 [TBL] [Abstract][Full Text] [Related]
8. NMDA inhibitors cause apoptosis of pyramidal neurons in mature piriform cortex: evidence for a nitric oxide-mediated effect involving inhibitory interneurons. Zhou L; Welsh AM; Chen D; Koliatsos VE Neuropharmacology; 2007 Jun; 52(7):1528-37. PubMed ID: 17449067 [TBL] [Abstract][Full Text] [Related]
9. Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult mouse. Lee JH; Wei L; Deveau TC; Gu X; Yu SP Brain Struct Funct; 2016 Jul; 221(6):3259-73. PubMed ID: 26334321 [TBL] [Abstract][Full Text] [Related]
10. Activity in the rat olfactory cortex is correlated with behavioral response to odor: a microPET study. Litaudon P; Bouillot C; Zimmer L; Costes N; Ravel N Brain Struct Funct; 2017 Jan; 222(1):577-586. PubMed ID: 27194619 [TBL] [Abstract][Full Text] [Related]
11. In Vivo [ Schoenberger M; Schroeder FA; Placzek MS; Carter RL; Rosen BR; Hooker JM; Sander CY ACS Chem Neurosci; 2018 Feb; 9(2):298-305. PubMed ID: 29050469 [TBL] [Abstract][Full Text] [Related]
12. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice. Islam S; Ueda M; Nishida E; Wang MX; Osawa M; Lee D; Itoh M; Nakagawa K; Tana ; Nakagawa T Brain Res; 2018 Jun; 1688():81-90. PubMed ID: 29571668 [TBL] [Abstract][Full Text] [Related]
13. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei. Brunert D; Tsuno Y; Rothermel M; Shipley MT; Wachowiak M J Neurosci; 2016 Jun; 36(25):6820-35. PubMed ID: 27335411 [TBL] [Abstract][Full Text] [Related]
14. Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex. Shao YF; Wang C; Xie JF; Kong XP; Xin L; Dong CY; Li J; Ren WT; Hou YP Brain Struct Funct; 2016 Jul; 221(6):3327-36. PubMed ID: 26323488 [TBL] [Abstract][Full Text] [Related]
16. Interaction between orexinergic neurons and NMDA receptors in the control of locus coeruleus-cerebrocortical noradrenergic activity of the rat. Tose R; Kushikata T; Yoshida H; Kudo M; Furukawa K; Ueno S; Hirota K Brain Res; 2009 Jan; 1250():81-7. PubMed ID: 19007758 [TBL] [Abstract][Full Text] [Related]
17. A role of gamma-amino butyric acid (GABA) and glutamate in control of puberty in female rhesus monkeys: effect of an antisense oligodeoxynucleotide for GAD67 messenger ribonucleic acid and MK801 on luteinizing hormone-releasing hormone release. Kasuya E; Nyberg CL; Mogi K; Terasawa E Endocrinology; 1999 Feb; 140(2):705-12. PubMed ID: 9927297 [TBL] [Abstract][Full Text] [Related]
19. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding. Tantirigama ML; Huang HH; Bekkers JM Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2407-2412. PubMed ID: 28196887 [TBL] [Abstract][Full Text] [Related]