BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29870589)

  • 1. Dual Electrospun Supramolecular Polymer Systems for Selective Cell Migration.
    Thakkar SH; Di Luca A; Zaccaria S; Baaijens FPT; Bouten CVC; Dankers PYW
    Macromol Biosci; 2018 Jul; 18(7):e1800004. PubMed ID: 29870589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Non-Cell Adhesive Vascular Grafts Using Supramolecular Building Blocks.
    van Almen GC; Talacua H; Ippel BD; Mollet BB; Ramaekers M; Simonet M; Smits AI; Bouten CV; Kluin J; Dankers PY
    Macromol Biosci; 2016 Mar; 16(3):350-62. PubMed ID: 26611660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides.
    Muylaert DE; van Almen GC; Talacua H; Fledderus JO; Kluin J; Hendrikse SI; van Dongen JL; Sijbesma E; Bosman AW; Mes T; Thakkar SH; Smits AI; Bouten CV; Dankers PY; Verhaar MC
    Biomaterials; 2016 Jan; 76():187-95. PubMed ID: 26524538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically Robust Electrospun Hydrogel Scaffolds Crosslinked via Supramolecular Interactions.
    Mollet BB; Spaans S; Fard PG; Bax NAM; Bouten CVC; Dankers PYW
    Macromol Biosci; 2017 Sep; 17(9):. PubMed ID: 28671766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radially Aligned Electrospun Fibers with Continuous Gradient of SDF1α for the Guidance of Neural Stem Cells.
    Li X; Li M; Sun J; Zhuang Y; Shi J; Guan D; Chen Y; Dai J
    Small; 2016 Sep; 12(36):5009-5018. PubMed ID: 27442189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft-sheath, stiff-core microfiber hydrogel for coating vascular implants.
    Boodagh P; Johnson R; Maly C; Ding Y; Tan W
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110395. PubMed ID: 31386934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber diameter, porosity and functional group gradients in electrospun scaffolds.
    Zonderland J; Rezzola S; Wieringa P; Moroni L
    Biomed Mater; 2020 Jun; 15(4):045020. PubMed ID: 32109896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.
    Henke M; Baumer J; Blunk T; Tessmar J
    J Tissue Eng Regen Med; 2014 Mar; 8(3):248-52. PubMed ID: 22718564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering.
    Lins LC; Wianny F; Livi S; Hidalgo IA; Dehay C; Duchet-Rumeau J; Gérard JF
    Biomacromolecules; 2016 Oct; 17(10):3172-3187. PubMed ID: 27629596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones.
    Dankers PY; van Leeuwen EN; van Gemert GM; Spiering AJ; Harmsen MC; Brouwer LA; Janssen HM; Bosman AW; van Luyn MJ; Meijer EW
    Biomaterials; 2006 Nov; 27(32):5490-501. PubMed ID: 16887183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel-fiber composites for heart valve tissue engineering.
    Tseng H; Puperi DS; Kim EJ; Ayoub S; Shah JV; Cuchiara ML; West JL; Grande-Allen KJ
    Tissue Eng Part A; 2014 Oct; 20(19-20):2634-45. PubMed ID: 24712446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties.
    Mollet BB; Comellas-Aragonès M; Spiering AJH; Söntjens SHM; Meijer EW; Dankers PYW
    J Mater Chem B; 2014 May; 2(17):2483-2493. PubMed ID: 32261418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modular and supramolecular approach to bioactive scaffolds for tissue engineering.
    Dankers PY; Harmsen MC; Brouwer LA; van Luyn MJ; Meijer EW
    Nat Mater; 2005 Jul; 4(7):568-74. PubMed ID: 15965478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity.
    Jin G; Lee S; Kim SH; Kim M; Jang JH
    Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G
    Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions.
    Guo M; Pitet LM; Wyss HM; Vos M; Dankers PY; Meijer EW
    J Am Chem Soc; 2014 May; 136(19):6969-77. PubMed ID: 24803288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coaxial PCL/PEG-thiol-ene microfiber with tunable physico-chemical properties for regenerative scaffolds.
    Iglesias-Echevarria M; Durante L; Johnson R; Rafuse M; Ding Y; Bonani W; Maniglio D; Tan W
    Biomater Sci; 2019 Aug; 7(9):3640-3651. PubMed ID: 31165794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.