BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29870813)

  • 21. Interaction between alpha and upsilon-crystallin, common to the eye of the Australian platypus, by radical probe mass spectrometry.
    Issa S; Downard KM
    J Mass Spectrom; 2006 Oct; 41(10):1298-303. PubMed ID: 17013829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional model and quaternary structure of the human eye lens protein gamma S-crystallin based on beta- and gamma-crystallin X-ray coordinates and ultracentrifugation.
    Zarina S; Slingsby C; Jaenicke R; Zaidi ZH; Driessen H; Srinivasan N
    Protein Sci; 1994 Oct; 3(10):1840-6. PubMed ID: 7849599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quaternary structure of bovine alpha-crystallin: influence of temperature.
    Vanhoudt J; Aerts T; Abgar S; Clauwaert J
    Int J Biol Macromol; 1998; 22(3-4):229-37. PubMed ID: 9650077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chaperone-like activity of bovine lens alpha-crystallin in the presence of dithiothreitol-destabilized proteins: characterization of the formed complexes.
    Abgar S; Yevlampieva N; Aerts T; Vanhoudt J; Clauwaert J
    Biochem Biophys Res Commun; 2000 Sep; 276(2):619-25. PubMed ID: 11027522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resistance of alpha-crystallin quaternary structure to UV irradiation.
    Krivandin AV; Muranov KO; Yakovlev FY; Poliansky NB; Wasserman LA; Ostrovsky MA
    Biochemistry (Mosc); 2009 Jun; 74(6):633-42. PubMed ID: 19645668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of gammaE-crystallin target protein binding to bovine lens alpha-crystallin by small-angle neutron scattering.
    Clarke MJ; Artero JB; Moulin M; Callow P; Carver JA; Griffiths PC; Haertlein M; Harding JJ; Meek KM; Timmins P; Regini JW
    Biochim Biophys Acta; 2010 Mar; 1800(3):392-7. PubMed ID: 20004233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lens proteome map and alpha-crystallin profile of the catfish Rita rita.
    Mohanty BP; Bhattacharjee S; Das MK
    Indian J Biochem Biophys; 2011 Feb; 48(1):35-41. PubMed ID: 21469600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enthalpy and entropy of hydration of bovine crystallins.
    Zhao T; Bettelheim FA
    J Biol Chem; 1995 Oct; 270(42):24961-4. PubMed ID: 7559623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification.
    Satish Kumar M; Mrudula T; Mitra N; Bhanuprakash Reddy G
    Exp Eye Res; 2004 Oct; 79(4):577-83. PubMed ID: 15381041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies.
    Haley DA; Bova MP; Huang QL; Mchaourab HS; Stewart PL
    J Mol Biol; 2000 Apr; 298(2):261-72. PubMed ID: 10764595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural properties of polydisperse biopolymer solutions: a light scattering study of bovine alpha-crystallin.
    Schurtenberger P; Augusteyn RC
    Biopolymers; 1991 Sep; 31(10):1229-40. PubMed ID: 1790299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays.
    Kumar MS; Reddy PY; Kumar PA; Surolia I; Reddy GB
    Biochem J; 2004 Apr; 379(Pt 2):273-82. PubMed ID: 14711370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-related changes of alpha-crystallin aggregate in human lens.
    Fujii N; Shimmyo Y; Sakai M; Sadakane Y; Nakamura T; Morimoto Y; Kinouchi T; Goto Y; Lampi K
    Amino Acids; 2007 Jan; 32(1):87-94. PubMed ID: 16699822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-similarity properties of alpha-crystallin supramolecular aggregates.
    Andreasi Bassi F; Arcovito G; De Spirito M; Mordente A; Martorana GE
    Biophys J; 1995 Dec; 69(6):2720-7. PubMed ID: 8599678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the structure of alpha m-crystallin. The reversibility of urea dissociation.
    Thomson JA; Augusteyn RC
    J Biol Chem; 1984 Apr; 259(7):4339-45. PubMed ID: 6707007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of betaA3/betaB2-crystallin mixed complexes: involvement of N- and C-terminal extensions.
    Werten PJ; Lindner RA; Carver JA; de Jong WW
    Biochim Biophys Acta; 1999 Jul; 1432(2):286-92. PubMed ID: 10407150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physicochemical characterization of beta-crystallins from bovine lenses: hydrodynamic and aggregation properties.
    Chiou SH; Azari P; Himmel ME; Lin HK; Chang WP
    J Protein Chem; 1989 Feb; 8(1):19-32. PubMed ID: 2765120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of α-crystallin structure by small angle neutron scattering with contrast variation.
    Krivandin AV; Murugova TN; Kuklin AI; Muranov KO; Poliansky NB; Aksenov VL; Ostrovsky MA
    Biochemistry (Mosc); 2010 Nov; 75(11):1324-30. PubMed ID: 21314599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of α-crystallin with some small molecules and its effect on its structure and function.
    Biswas A; Karmakar S; Chowdhury A; Das KP
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):211-21. PubMed ID: 26073614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. α-crystallin modulates its chaperone activity by varying the exposed surface.
    Palmieri V; Maulucci G; Maiorana A; Papi M; De Spirito M
    Chembiochem; 2013 Nov; 14(17):2362-70. PubMed ID: 24222572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.