These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 29870897)
1. Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment. Xiang J; Huang Q; Lv W; Pei G; Lv X; Bai C J Hazard Mater; 2018 Sep; 357():128-137. PubMed ID: 29870897 [TBL] [Abstract][Full Text] [Related]
2. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag. Xiang J; Huang Q; Lv X; Bai C J Hazard Mater; 2017 Aug; 336():1-7. PubMed ID: 28463734 [TBL] [Abstract][Full Text] [Related]
3. Selective nitridation-corrosion process to recover vanadium, titanium, chromium, and iron from vanadium slag. Hu Q; Pan S; Gao X; Liu Y; Huang Q; You Y; You Z; Lv X J Environ Manage; 2023 Jan; 325(Pt B):116604. PubMed ID: 36308966 [TBL] [Abstract][Full Text] [Related]
4. Innovative method for minimization of waste containing Fe, Mn and Ti during comprehensive utilization of vanadium slag. Liu S; Wang L; Chou KC Waste Manag; 2021 May; 127():179-188. PubMed ID: 33945936 [TBL] [Abstract][Full Text] [Related]
5. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation. Zhang Y; Li H; Yu X J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161 [TBL] [Abstract][Full Text] [Related]
6. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation. Yang H; Jing L; Zhang B J Hazard Mater; 2011 Jan; 185(2-3):1405-11. PubMed ID: 21071144 [TBL] [Abstract][Full Text] [Related]
7. An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings. Wen J; Jiang T; Wang J; Gao H; Lu L J Hazard Mater; 2019 Oct; 378():120733. PubMed ID: 31202069 [TBL] [Abstract][Full Text] [Related]
8. Mineralogical characterisation and magnetic separation of vanadium-bearing converter slag. Xiang J; Huang Q; Lv W; Pei G; Lv X; Liu S Waste Manag Res; 2018 Nov; 36(11):1083-1091. PubMed ID: 30198425 [TBL] [Abstract][Full Text] [Related]
9. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. Li C; Sun H; Bai J; Li L J Hazard Mater; 2010 Feb; 174(1-3):71-7. PubMed ID: 19782467 [TBL] [Abstract][Full Text] [Related]
10. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide. Wen J; Jiang T; Gao H; Zhou W; Xu Y; Zheng X; Liu Y; Xue X J Environ Manage; 2019 Aug; 244():119-126. PubMed ID: 31112876 [TBL] [Abstract][Full Text] [Related]
11. Vanadium Chemical Compounds forms in Wastes of Vanadium Pentoxide Production. Volkov A; Kologrieva U; Kovalev A; Wainstein D; Vakhrushev V Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143341 [TBL] [Abstract][Full Text] [Related]
12. A novel method for vanadium slag comprehensive utilization to synthesize Zn-Mn ferrite and Fe-V-Cr alloy. Liu SY; Li SJ; Wu S; Wang LJ; Chou KC J Hazard Mater; 2018 Jul; 354():99-106. PubMed ID: 29729604 [TBL] [Abstract][Full Text] [Related]
13. Deep understanding of sustainable vanadium recovery from chrome vanadium slag: Promotive action of competitive chromium species for vanadium solvent extraction. Wen J; Sun Y; Ning P; Xu G; Sun S; Sun Z; Cao H J Hazard Mater; 2022 Jan; 422():126791. PubMed ID: 34416691 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous removal of Cr(III) and V(V) and enhanced synthesis of high-grade rutile TiO Chen G; Jiang Q; Li K; He A; Peng J; Omran M; Chen J J Hazard Mater; 2020 Apr; 388():122039. PubMed ID: 31954310 [TBL] [Abstract][Full Text] [Related]
15. Selective leaching of vanadium over iron from vanadium slag. Zhang X; Fang D; Song S; Cheng G; Xue X J Hazard Mater; 2019 Apr; 368():300-307. PubMed ID: 30685718 [TBL] [Abstract][Full Text] [Related]
16. Reduction-Sulfurization Smelting Process of Waste Hydrogenation Catalysts, Automotive Exhaust Purifier Waste Catalysts, and Laterite Nickel Ore. Wang Z; Wang H; Jie X; Zhao X; Waters KE; Northwood DO; Cui S; Ma H ACS Omega; 2023 Oct; 8(43):40713-40728. PubMed ID: 37929153 [TBL] [Abstract][Full Text] [Related]
17. Froth flotation separation of carbon from barium slag: Recycling of carbon and minimize the slag. Yang T; Wang N; Gu H; Guo T Waste Manag; 2021 Feb; 120():108-113. PubMed ID: 33290881 [TBL] [Abstract][Full Text] [Related]
18. Vanadium mobilization and redistribution during mineral transformation of vanadium-titanium magnetite tailings with different weathering degrees. Gan CD; Yang JY; Du XY; Li JL; Tang QX; Nikitin A Sci Total Environ; 2023 Oct; 894():165068. PubMed ID: 37355119 [TBL] [Abstract][Full Text] [Related]
19. Recovery of iron by jarosite crystallization and separation of vanadium by solvent extraction with extractant 7101 from titanium white waste liquid (TWWL). Li W; Niu Z; Zhu X Water Sci Technol; 2021 Apr; 83(8):2025-2037. PubMed ID: 33905370 [TBL] [Abstract][Full Text] [Related]
20. Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments. Gomes HI; Funari V; Mayes WM; Rogerson M; Prior TJ J Environ Manage; 2018 Sep; 222():30-36. PubMed ID: 29800862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]