These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 29870948)

  • 41. Ratio of Methylmercury to Dissolved Organic Carbon in Water Explains Methylmercury Bioaccumulation Across a Latitudinal Gradient from North-Temperate to Arctic Lakes.
    Chételat J; Richardson MC; MacMillan GA; Amyot M; Poulain AJ
    Environ Sci Technol; 2018 Jan; 52(1):79-88. PubMed ID: 29172471
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Estimating mercury concentrations and fluxes in the water column and sediment of Lake Ontario with HERMES model.
    Ethier AL; Atkinson JF; Depinto JV; Lean DR
    Environ Pollut; 2012 Feb; 161():335-42. PubMed ID: 21726924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mercury accumulation rates and spatial patterns in lake sediments from west Greenland: a coast to ice margin transect.
    Bindler R; Renberg I; Appleby PG; Anderson NJ; Rose NL
    Environ Sci Technol; 2001 May; 35(9):1736-41. PubMed ID: 11355186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate.
    Chételat J; Amyot M; Arp P; Blais JM; Depew D; Emmerton CA; Evans M; Gamberg M; Gantner N; Girard C; Graydon J; Kirk J; Lean D; Lehnherr I; Muir D; Nasr M; Poulain AJ; Power M; Roach P; Stern G; Swanson H; van der Velden S
    Sci Total Environ; 2015 Mar; 509-510():41-66. PubMed ID: 24993511
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Climate change and mercury in the Arctic: Abiotic interactions.
    Chételat J; McKinney MA; Amyot M; Dastoor A; Douglas TA; Heimbürger-Boavida LE; Kirk J; Kahilainen KK; Outridge PM; Pelletier N; Skov H; St Pierre K; Vuorenmaa J; Wang F
    Sci Total Environ; 2022 Jun; 824():153715. PubMed ID: 35149079
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diatom evidence of 20th century ecosystem change in Lake Baikal, Siberia.
    Roberts SL; Swann GEA; McGowan S; Panizzo VN; Vologina EG; Sturm M; Mackay AW
    PLoS One; 2018; 13(12):e0208765. PubMed ID: 30566423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.
    Liu Y; Li C; Anderson B; Zhang S; Shi X; Zhao S
    Chemosphere; 2017 Jun; 176():117-124. PubMed ID: 28260652
    [TBL] [Abstract][Full Text] [Related]  

  • 48. How well do environmental archives of atmospheric mercury deposition in the Arctic reproduce rates and trends depicted by atmospheric models and measurements?
    Goodsite ME; Outridge PM; Christensen JH; Dastoor A; Muir D; Travnikov O; Wilson S
    Sci Total Environ; 2013 May; 452-453():196-207. PubMed ID: 23506852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sediment lipid biomarkers record phytoplankton dynamics of Lake Heihai (Yunnan Province, SW China) driven by climate warming since the 1980s.
    Zhang Y; Su Y; Liu Z; Yu J; Jin M
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21509-21516. PubMed ID: 28803343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mercury accumulation in sediment cores from three Washington state lakes: evidence for local deposition from a coal-fired power plant.
    Furl CV; Meredith CA
    Arch Environ Contam Toxicol; 2011 Jan; 60(1):26-33. PubMed ID: 20437040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modern and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores.
    Stern GA; Braekevelt E; Helm PA; Bidleman TF; Outridge PM; Lockhart WL; McNeeley R; Rosenberg B; Ikonomou MG; Hamilton P; Tomy GT; Wilkinson P
    Sci Total Environ; 2005 Apr; 342(1-3):223-43. PubMed ID: 15866277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska.
    Burke SM; Zimmerman CE; Laske SM; Koch JC; Derry AM; Guernon S; Branfireun BA; Swanson HK
    Sci Total Environ; 2020 Nov; 743():140564. PubMed ID: 32758814
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tests of the fidelity of lake sediment core records of mercury deposition to known histories of mercury contamination.
    Lockhart WL; Macdonald RW; Outridge PM; Wilkinson P; DeLaronde JB; Rudd JW
    Sci Total Environ; 2000 Oct; 260(1-3):171-80. PubMed ID: 11032125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Natural fluctuations of mercury and lead in Greenland lake sediments.
    Lindeberg C; Bindler R; Renberg I; Emteryd O; Karlsson E; Anderson NJ
    Environ Sci Technol; 2006 Jan; 40(1):90-5. PubMed ID: 16433337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England.
    Yang H; Turner S; Rose NL
    Environ Pollut; 2016 Dec; 219():1092-1101. PubMed ID: 27639616
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessing the impact of long-term changes in climate and atmospheric deposition on a shallow alpine lake from southeast Tibet.
    Kang W; Chen G; Wang J; Huang L; Wang L; Li R; Hu K; Liu Y; Tao J; Blais JM; Smol JP
    Sci Total Environ; 2019 Feb; 650(Pt 1):713-724. PubMed ID: 30212702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contemporary and preindustrial mass budgets of mercury in the Hudson Bay Marine System: the role of sediment recycling.
    Hare A; Stern GA; Macdonald RW; Kuzyk ZZ; Wang F
    Sci Total Environ; 2008 Nov; 406(1-2):190-204. PubMed ID: 18765159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reconstructing the ecological impacts of eight decades of mining, metallurgical, and municipal activities on a small boreal lake in northern Canada.
    Doig LE; Schiffer ST; Liber K
    Integr Environ Assess Manag; 2015 Jul; 11(3):490-501. PubMed ID: 25581271
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atmospheric mercury accumulation rate in northeastern China during the past 800 years as recorded by the sediments of Tianchi Crater Lake.
    Zhan T; Zhou X; Cheng W; He X; Tu L; Liu X; Ge J; Xie Y; Zhang J; Ma Y; Li E; Qiao Y
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):571-578. PubMed ID: 31808082
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region.
    Summers JC; Kurek J; Kirk JL; Muir DC; Wang X; Wiklund JA; Cooke CA; Evans MS; Smol JP
    PLoS One; 2016; 11(5):e0153987. PubMed ID: 27135946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.