These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 29870952)
21. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143 [TBL] [Abstract][Full Text] [Related]
22. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Wu C; Zhou Y; Fan W; Han P; Chang J; Yuen J; Zhang M; Xiao Y Biomaterials; 2012 Mar; 33(7):2076-85. PubMed ID: 22177618 [TBL] [Abstract][Full Text] [Related]
23. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite. Fang Z; Feng Q Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():190-4. PubMed ID: 24411368 [TBL] [Abstract][Full Text] [Related]
24. In vitro colonization of stratified bioactive scaffolds by pre-osteoblast cells. Gómez-Cerezo N; Sánchez-Salcedo S; Izquierdo-Barba I; Arcos D; Vallet-Regí M Acta Biomater; 2016 Oct; 44():73-84. PubMed ID: 27521495 [TBL] [Abstract][Full Text] [Related]
25. Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds. Xiao G; Yin H; Xu W; Lu Y J Biomater Sci Polym Ed; 2016 Oct; 27(14):1462-75. PubMed ID: 27398630 [TBL] [Abstract][Full Text] [Related]
26. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Wu C; Zhou Y; Lin C; Chang J; Xiao Y Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735 [TBL] [Abstract][Full Text] [Related]
27. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
28. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280 [TBL] [Abstract][Full Text] [Related]
29. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds. Saito E; Liu Y; Migneco F; Hollister SJ Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030 [TBL] [Abstract][Full Text] [Related]
30. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering. Liu D; Zhuang J; Shuai C; Peng S Biofabrication; 2013 Jun; 5(2):025005. PubMed ID: 23458914 [TBL] [Abstract][Full Text] [Related]
31. Silver-doped bioglass modified scaffolds: A sustained antibacterial efficacy. Qian G; Zhang L; Liu X; Wu S; Peng S; Shuai C Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112425. PubMed ID: 34579875 [TBL] [Abstract][Full Text] [Related]
32. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications. Sadiasa A; Nguyen TH; Lee BT J Biomater Sci Polym Ed; 2014; 25(2):150-67. PubMed ID: 24138179 [TBL] [Abstract][Full Text] [Related]
33. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration. Liu Y; Huang Q; Feng Q Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162 [TBL] [Abstract][Full Text] [Related]
34. Co-enhance bioactive of polymer scaffold with mesoporous silica and nano-hydroxyapatite. Shuai C; Xu Y; Feng P; Xu L; Peng S; Deng Y J Biomater Sci Polym Ed; 2019 Aug; 30(12):1097-1113. PubMed ID: 31156060 [TBL] [Abstract][Full Text] [Related]
35. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Lee JH; Park TG; Park HS; Lee DS; Lee YK; Yoon SC; Nam JD Biomaterials; 2003 Jul; 24(16):2773-8. PubMed ID: 12711524 [TBL] [Abstract][Full Text] [Related]
36. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Wu C; Zhou Y; Chang J; Xiao Y Acta Biomater; 2013 Nov; 9(11):9159-68. PubMed ID: 23811216 [TBL] [Abstract][Full Text] [Related]
37. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Wang X; Cheng F; Liu J; Smått JH; Gepperth D; Lastusaari M; Xu C; Hupa L Acta Biomater; 2016 Dec; 46():286-298. PubMed ID: 27646503 [TBL] [Abstract][Full Text] [Related]
38. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles. Novajra G; Boetti NG; Lousteau J; Fiorilli S; Milanese D; Vitale-Brovarone C Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():570-580. PubMed ID: 27287156 [TBL] [Abstract][Full Text] [Related]
39. Wetspun poly-L-(lactic acid)-borosilicate bioactive glass scaffolds for guided bone regeneration. Fernandes JS; Reis RL; Pires RA Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():252-259. PubMed ID: 27987706 [TBL] [Abstract][Full Text] [Related]
40. A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteogenesis. Wu C; Zhang Y; Zhou Y; Fan W; Xiao Y Acta Biomater; 2011 May; 7(5):2229-36. PubMed ID: 21185954 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]