These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 29870964)
1. Neodymium recovery from NdFeB magnet wastes using Primene 81R·Cyanex 572 IL by solvent extraction. Pavón S; Fortuny A; Coll MT; Sastre AM J Environ Manage; 2018 Sep; 222():359-367. PubMed ID: 29870964 [TBL] [Abstract][Full Text] [Related]
2. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents. Pavón S; Fortuny A; Coll MT; Sastre AM Waste Manag; 2018 Dec; 82():241-248. PubMed ID: 30509586 [TBL] [Abstract][Full Text] [Related]
3. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction. Kim D; Powell LE; Delmau LH; Peterson ES; Herchenroeder J; Bhave RR Environ Sci Technol; 2015 Aug; 49(16):9452-9. PubMed ID: 26107531 [TBL] [Abstract][Full Text] [Related]
4. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach. Habib K; Schibye PK; Vestbø AP; Dall O; Wenzel H Environ Sci Technol; 2014 Oct; 48(20):12229-37. PubMed ID: 25238428 [TBL] [Abstract][Full Text] [Related]
5. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects. Kumari A; Sinha MK; Pramanik S; Sahu SK Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277 [TBL] [Abstract][Full Text] [Related]
6. ZnCl Ding A; Liu C; Zhang X; Lei L; Xiao C Environ Sci Technol; 2022 Apr; 56(7):4404-4412. PubMed ID: 35286072 [TBL] [Abstract][Full Text] [Related]
7. Efficient Recovery of End-of-Life NdFeB Permanent Magnets by Selective Leaching with Deep Eutectic Solvents. Liu C; Yan Q; Zhang X; Lei L; Xiao C Environ Sci Technol; 2020 Aug; 54(16):10370-10379. PubMed ID: 32673480 [TBL] [Abstract][Full Text] [Related]
8. Mechanical activation induced treatment for the synergistic recovery of valuable elements from spent NdFeB magnets. Wu J; Wang D; Zhang Z; Ye C; Wang Z; Hu X Waste Manag; 2024 Apr; 178():76-84. PubMed ID: 38382349 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Separation of Neodymium and Dysprosium by Nonaqueous Solvent Extraction from a Polyethylene Glycol 200 Phase Using the Neutral Extractant Cyanex 923. Dewulf B; Batchu NK; Binnemans K ACS Sustain Chem Eng; 2020 Dec; 8(51):19032-19039. PubMed ID: 33457111 [TBL] [Abstract][Full Text] [Related]
10. Environmentally friendly comprehensive hydrometallurgical method development for neodymium recovery from mixed rare earth aqueous solutions using organo-phosphorus derivatives. Arellano Ruiz VC; Kuchi R; Parhi PK; Lee JY; Jyothi RK Sci Rep; 2020 Oct; 10(1):16911. PubMed ID: 33037283 [TBL] [Abstract][Full Text] [Related]
11. Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors. Jin H; Afiuny P; Dove S; Furlan G; Zakotnik M; Yih Y; Sutherland JW Environ Sci Technol; 2018 Mar; 52(6):3796-3802. PubMed ID: 29486124 [TBL] [Abstract][Full Text] [Related]
12. Recovery and Separation of Dysprosium from Waste Neodymium Magnets through Cyphos IL 104 Extraction. Chen WS; Jian GC; Lee CH Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955215 [TBL] [Abstract][Full Text] [Related]
13. Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: batch and mixer-settler experiments. Riaño S; Sobekova Foltova S; Binnemans K RSC Adv; 2019 Dec; 10(1):307-316. PubMed ID: 35492521 [TBL] [Abstract][Full Text] [Related]
14. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment. Lixandru A; Venkatesan P; Jönsson C; Poenaru I; Hall B; Yang Y; Walton A; Güth K; Gauß R; Gutfleisch O Waste Manag; 2017 Oct; 68():482-489. PubMed ID: 28751173 [TBL] [Abstract][Full Text] [Related]
15. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Sprecher B; Xiao Y; Walton A; Speight J; Harris R; Kleijn R; Visser G; Kramer GJ Environ Sci Technol; 2014 Apr; 48(7):3951-8. PubMed ID: 24576005 [TBL] [Abstract][Full Text] [Related]
16. Selective Recovery of Rare Earth Elements from a Wide Range of E-Waste and Process Scalability of Membrane Solvent Extraction. Deshmane VG; Islam SZ; Bhave RR Environ Sci Technol; 2020 Jan; 54(1):550-558. PubMed ID: 31794204 [TBL] [Abstract][Full Text] [Related]
17. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling. Rademaker JH; Kleijn R; Yang Y Environ Sci Technol; 2013 Sep; 47(18):10129-36. PubMed ID: 23909476 [TBL] [Abstract][Full Text] [Related]
18. An innovative environmental process for the treatment of scrap Nd-Fe-B magnets. Kumari A; Jha MK; Pathak DD J Environ Manage; 2020 Nov; 273():111063. PubMed ID: 32861149 [TBL] [Abstract][Full Text] [Related]
19. NdFeB content in ancillary motors of U.S. conventional passenger cars and light trucks: Results from the field. Nguyen RT; Imholte DD; Matthews AC; Swank WD Waste Manag; 2019 Jan; 83():209-217. PubMed ID: 30459019 [TBL] [Abstract][Full Text] [Related]
20. The importance of the pretreatment of samples in Nd quantification from NdFeB magnets through inductively coupled plasma atomic emission spectroscopy (ICP-OES)-a rapid and streamlined methodology. Gallardo K; Valdivia D; Jara A; Castillo R J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(11):935-941. PubMed ID: 37791682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]