These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 29872019)
1. Effect of PEDOT:PSS in tissue engineering composite scaffold on improvement and maintenance of endothelial cell function. Mahmoudinezhad MH; Karkhaneh A; Jadidi K J Biosci; 2018 Jun; 43(2):307-319. PubMed ID: 29872019 [TBL] [Abstract][Full Text] [Related]
2. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Pires F; Ferreira Q; Rodrigues CA; Morgado J; Ferreira FC Biochim Biophys Acta; 2015 Jun; 1850(6):1158-68. PubMed ID: 25662071 [TBL] [Abstract][Full Text] [Related]
3. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
5. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. Yeo JS; Yun JM; Kim DY; Park S; Kim SS; Yoon MH; Kim TW; Na SI ACS Appl Mater Interfaces; 2012 May; 4(5):2551-60. PubMed ID: 22489686 [TBL] [Abstract][Full Text] [Related]
6. Biological response of protists Haematococcus lacustris and Euglena gracilis to conductive polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate. Zhu J; Omura T; Wakisaka M Lett Appl Microbiol; 2021 May; 72(5):619-625. PubMed ID: 33566365 [TBL] [Abstract][Full Text] [Related]
7. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Guex AG; Puetzer JL; Armgarth A; Littmann E; Stavrinidou E; Giannelis EP; Malliaras GG; Stevens MM Acta Biomater; 2017 Oct; 62():91-101. PubMed ID: 28865991 [TBL] [Abstract][Full Text] [Related]
8. Use of human aortic extracellular matrix as a scaffold for construction of a patient-specific tissue engineered vascular patch. Gao LP; Du MJ; Lv JJ; Schmull S; Huang RT; Li J Biomed Mater; 2017 Oct; 12(6):065006. PubMed ID: 28714856 [TBL] [Abstract][Full Text] [Related]
9. Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: Fabrication and characterization. Chang HC; Sun T; Sultana N; Lim MM; Khan TH; Ismail AF Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():396-410. PubMed ID: 26838866 [TBL] [Abstract][Full Text] [Related]
10. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering. Pankajakshan D; Krishnan V K; Krishnan LK Biofabrication; 2010 Dec; 2(4):041001. PubMed ID: 21076184 [TBL] [Abstract][Full Text] [Related]
11. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering. Wang S; Guan S; Li W; Ge D; Xu J; Sun C; Liu T; Ma X Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():890-901. PubMed ID: 30274126 [TBL] [Abstract][Full Text] [Related]
12. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering. Jabbarzadeh E; Jiang T; Deng M; Nair LS; Khan YM; Laurencin CT Biotechnol Bioeng; 2007 Dec; 98(5):1094-102. PubMed ID: 17497742 [TBL] [Abstract][Full Text] [Related]
13. Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS). Yazdimamaghani M; Razavi M; Mozafari M; Vashaee D; Kotturi H; Tayebi L J Mater Sci Mater Med; 2015 Dec; 26(12):274. PubMed ID: 26543020 [TBL] [Abstract][Full Text] [Related]
14. 3D conductive nanocomposite scaffold for bone tissue engineering. Shahini A; Yazdimamaghani M; Walker KJ; Eastman MA; Hatami-Marbini H; Smith BJ; Ricci JL; Madihally SV; Vashaee D; Tayebi L Int J Nanomedicine; 2014; 9():167-81. PubMed ID: 24399874 [TBL] [Abstract][Full Text] [Related]
15. Bone marrow CD34 Zhang S; Ma X; Guo J; Yao K; Wang C; Dong Z; Zhu H; Fan F; Huang Z; Yang X; Qian J; Zou Y; Sun A; Ge J Stem Cell Res Ther; 2017 Dec; 8(1):280. PubMed ID: 29237495 [TBL] [Abstract][Full Text] [Related]
16. Physical and Electrochemical Properties of PEDOT:PSS as a Tool for Controlling Cell Growth. Marzocchi M; Gualandi I; Calienni M; Zironi I; Scavetta E; Castellani G; Fraboni B ACS Appl Mater Interfaces; 2015 Aug; 7(32):17993-8003. PubMed ID: 26208175 [TBL] [Abstract][Full Text] [Related]
17. PEDOT:PSS interfaces stabilised using a PEGylated crosslinker yield improved conductivity and biocompatibility. Solazzo M; Krukiewicz K; Zhussupbekova A; Fleischer K; Biggs MJ; Monaghan MG J Mater Chem B; 2019 Aug; 7(31):4811-4820. PubMed ID: 31389966 [TBL] [Abstract][Full Text] [Related]
18. Effect of glycerol on retention time and electrical properties of polymer bistable memory devices based on glycerol-modified PEDOT:PSS. Park B; Lee J; Kim O J Nanosci Nanotechnol; 2012 Jan; 12(1):469-74. PubMed ID: 22524004 [TBL] [Abstract][Full Text] [Related]
19. One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture. Zhuang A; Huang X; Fan S; Yao X; Zhu B; Zhang Y ACS Appl Mater Interfaces; 2022 Jan; 14(1):123-137. PubMed ID: 34935351 [TBL] [Abstract][Full Text] [Related]
20. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]