These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29872230)

  • 1. Characterization of the electrical conductivity of bone and its correlation to osseous structure.
    Balmer TW; Vesztergom S; Broekmann P; Stahel A; Büchler P
    Sci Rep; 2018 Jun; 8(1):8601. PubMed ID: 29872230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical and dielectric properties of bovine trabecular bone--relationships with mechanical properties and mineral density.
    Sierpowska J; Töyräs J; Hakulinen MA; Saarakkala S; Jurvelin JS; Lappalainen R
    Phys Med Biol; 2003 Mar; 48(6):775-86. PubMed ID: 12699194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of human trabecular bone composition on its electrical properties.
    Sierpowska J; Lammi MJ; Hakulinen MA; Jurvelin JS; Lappalainen R; Töyräs J
    Med Eng Phys; 2007 Oct; 29(8):845-52. PubMed ID: 17097909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrelationships between electrical properties and microstructure of human trabecular bone.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Kiviranta I; Jurvelin JS; Lappalainen R
    Phys Med Biol; 2006 Oct; 51(20):5289-303. PubMed ID: 17019039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of human cancellous and subchondral bone with respect to electro physical properties and bone mineral density by means of impedance spectroscopy.
    Haba Y; Wurm A; Köckerling M; Schick C; Mittelmeier W; Bader R
    Med Eng Phys; 2017 Jul; 45():34-41. PubMed ID: 28462825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric and dielectric properties of wet human cortical bone as a function of frequency.
    Saha S; Williams PA
    IEEE Trans Biomed Eng; 1992 Dec; 39(12):1298-304. PubMed ID: 1487293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of electrophysical and structural properties of human cancellous bone and synthetic bone substitute material using impedance spectroscopy and X-ray powder diffraction.
    Haba Y; Köckerling M; Schick C; Mittelmeier W; Bader R
    Acta Bioeng Biomech; 2018; 20(1):11-19. PubMed ID: 29658523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrical and dielectric properties of human bone tissue and their relationship with density and bone mineral content.
    Williams PA; Saha S
    Ann Biomed Eng; 1996; 24(2):222-33. PubMed ID: 8678354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance electrical properties tomography for small anomalies using boundary conditions: A simulation study.
    Lee J; Choi N; Seo JK; Kim DH
    Med Phys; 2017 Sep; 44(9):4773-4785. PubMed ID: 28508476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical impedance spectroscopy as a potential tool for recovering bone porosity.
    Bonifasi-Lista C; Cherkaev E
    Phys Med Biol; 2009 May; 54(10):3063-82. PubMed ID: 19398814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the electrical and dielectric behavior of wet human cortical and cancellous bone tissue from the distal tibia.
    Saha S; Williams PA
    J Orthop Res; 1995 Jul; 13(4):524-32. PubMed ID: 7674068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric and dielectric properties of wet human cancellous bone as a function of frequency.
    Saha S; Williams PA
    Ann Biomed Eng; 1989; 17(2):143-58. PubMed ID: 2729682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental validations of in vivo human musculoskeletal tissue conductivity images using MR-based electrical impedance tomography.
    Jeong WC; Meng ZJ; Kim HJ; Kwon OI; Woo EJ
    Bioelectromagnetics; 2014 Jul; 35(5):363-72. PubMed ID: 24737160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical impedance spectroscopy for electro-mechanical characterization of conductive fabrics.
    Bera TK; Mohamadou Y; Lee K; Wi H; Oh TI; Woo EJ; Soleimani M; Seo JK
    Sensors (Basel); 2014 Jun; 14(6):9738-54. PubMed ID: 24892493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Vivo Electrical Impedance Measurement in Mastoid Bone.
    Wyss Balmer T; Ansó J; Muntane E; Gavaghan K; Weber S; Stahel A; Büchler P
    Ann Biomed Eng; 2017 Apr; 45(4):1122-1132. PubMed ID: 27830489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance osteography: a technique to study the electrical characteristics of fracture healing.
    Ritchie IK; Chesney RB; Gibson P; Kulkarni V; Hutchison JM
    Biomed Sci Instrum; 1989; 25():59-77. PubMed ID: 2742980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous imaging of dual-frequency electrical conductivity using a combination of MREIT and MREPT.
    Kim HJ; Jeong WC; Sajib SZ; Kim MO; Kwon OI; Je Woo E; Kim DH
    Magn Reson Med; 2014 Jan; 71(1):200-8. PubMed ID: 23400804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-destructive label-free continuous monitoring of in vitro chondrogenesis via electrical conductivity and its anisotropy.
    Oh TI; Kim C; Karki B; Son Y; Lee E; Woo EJ
    Biotechnol Bioeng; 2015 Feb; 112(2):422-7. PubMed ID: 25082740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.