BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 29872379)

  • 21. Dense Packed Drivable Optrode Array for Precise Optical Stimulation and Neural Recording in Multiple-Brain Regions.
    Wang L; Ge C; Wang F; Guo Z; Hong W; Jiang C; Ji B; Wang M; Li C; Sun B; Liu J
    ACS Sens; 2021 Nov; 6(11):4126-4135. PubMed ID: 34779610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optogenetic Modulation of Locomotor Activity on Free-Behaving Rats.
    Xu K; Zhang J; Guo S; Zheng X
    Methods Mol Biol; 2016; 1408():195-206. PubMed ID: 26965124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of an Improved Multi-Tetrode Hyperdrive for Large-Scale Neural Recording in Behaving Rats.
    Lu L; Popeney B; Dickman JD; Angelaki DE
    J Vis Exp; 2018 May; (135):. PubMed ID: 29806835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioluminescent optogenetic (BL-OG) activation of neurons during mouse postnatal brain development.
    Crespo EL; Prakash M; Bjorefeldt A; Medendorp WE; Shaner NC; Lipscombe D; Moore CI; Hochgeschwender U
    STAR Protoc; 2021 Sep; 2(3):100667. PubMed ID: 34286295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Training protocol for probabilistic Pavlovian conditioning in mice using an open-source head-fixed setup.
    Hegedüs P; Velencei A; Belval CH; Heckenast J; Hangya B
    STAR Protoc; 2021 Sep; 2(3):100795. PubMed ID: 34522902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation.
    Chen CH; McCullagh EA; Pun SH; Mak PU; Vai MI; Mak PI; Klug A; Lei TC
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):557-568. PubMed ID: 28221990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel 3D-Printed Multi-Drive System for Synchronous Electrophysiological Recording in Multiple Brain Regions.
    Ma J; Zhao Z; Cui S; Liu FY; Yi M; Wan Y
    Front Neurosci; 2019; 13():1322. PubMed ID: 31920492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals.
    Lansink CS; Bakker M; Buster W; Lankelma J; van der Blom R; Westdorp R; Joosten RN; McNaughton BL; Pennartz CM
    J Neurosci Methods; 2007 May; 162(1-2):129-38. PubMed ID: 17307256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and fabrication of ultralight weight, adjustable multi-electrode probes for electrophysiological recordings in mice.
    Brunetti PM; Wimmer RD; Liang L; Siegle JH; Voigts J; Wilson M; Halassa MM
    J Vis Exp; 2014 Sep; (91):e51675. PubMed ID: 25225749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
    Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Lightweight Drive Implant for Chronic Tetrode Recordings in Juvenile Mice.
    Pendry RJ; Quigley LD; Volk LJ; Pfeiffer BE
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37335110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Closed-Loop Optogenetic Brain Interface.
    Pashaie R; Baumgartner R; Richner TJ; Brodnick SK; Azimipour M; Eliceiri KW; Williams JC
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2327-37. PubMed ID: 26011877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning.
    Sato T; Suzuki T; Mabuchi K
    J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New approaches for CMOS-based devices for large-scale neural recording.
    Ruther P; Paul O
    Curr Opin Neurobiol; 2015 Jun; 32():31-7. PubMed ID: 25463562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Open source silicon microprobes for high throughput neural recording.
    Yang L; Lee K; Villagracia J; Masmanidis SC
    J Neural Eng; 2020 Jan; 17(1):016036. PubMed ID: 31731284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implantation of Neuropixels probes for chronic recording of neuronal activity in freely behaving mice and rats.
    van Daal RJJ; Aydin Ç; Michon F; Aarts AAA; Kraft M; Kloosterman F; Haesler S
    Nat Protoc; 2021 Jul; 16(7):3322-3347. PubMed ID: 34108732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconfigurable 3D-Printed headplates for reproducible and rapid implantation of EEG, EMG and depth electrodes in mice.
    Zhu KJ; Aiani LM; Pedersen NP
    J Neurosci Methods; 2020 Mar; 333():108566. PubMed ID: 31870688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of in vivo electrophysiology and optogenetics in rodents with PEDOT:PSS neural electrode array.
    Cho YU; Lee JY; Yu KJ
    STAR Protoc; 2024 Mar; 5(1):102909. PubMed ID: 38427565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fiber-optic implantation for chronic optogenetic stimulation of brain tissue.
    Ung K; Arenkiel BR
    J Vis Exp; 2012 Oct; (68):e50004. PubMed ID: 23128465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.