BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29873126)

  • 1. Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins.
    Li Z; Liu J; Zhao Y; Waterhouse GIN; Chen G; Shi R; Zhang X; Liu X; Wei Y; Wen XD; Wu LZ; Tung CH; Zhang T
    Adv Mater; 2018 Aug; 30(31):e1800527. PubMed ID: 29873126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive Transformation of Layered-Double-Hydroxide Nanosheets to Fe-Based Heterostructures for Efficient Visible-Light Photocatalytic Hydrogenation of CO.
    Zhao Y; Li Z; Li M; Liu J; Liu X; Waterhouse GIN; Wang Y; Zhao J; Gao W; Zhang Z; Long R; Zhang Q; Gu L; Liu X; Wen X; Ma D; Wu LZ; Tung CH; Zhang T
    Adv Mater; 2018 Jul; ():e1803127. PubMed ID: 30066491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO
    Chen G; Gao R; Zhao Y; Li Z; Waterhouse GIN; Shi R; Zhao J; Zhang M; Shang L; Sheng G; Zhang X; Wen X; Wu LZ; Tung CH; Zhang T
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29205526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unleashing the Full Potential of Photo-Driven CO Hydrogenation to Light Olefins over Carbon-Coated CoMn-Based Catalysts.
    Li R; Li Y; Li Z; Ouyang S; Yuan H; Zhang T
    Adv Mater; 2023 Nov; 35(44):e2307217. PubMed ID: 37704217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.
    Falkenhagen JP; Maisonneuve L; Paalanen PP; Coste N; Malicki N; Weckhuysen BM
    Chemistry; 2018 Mar; 24(18):4597-4606. PubMed ID: 29493817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas.
    Zhu C; Zhang M; Huang C; Han Y; Fang K
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57950-57962. PubMed ID: 33337154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas.
    Jeske K; Kizilkaya AC; López-Luque I; Pfänder N; Bartsch M; Concepción P; Prieto G
    ACS Catal; 2021 Apr; 11(8):4784-4798. PubMed ID: 33889436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titania-Supported Ni
    Li Z; Zhang X; Liu J; Shi R; Waterhouse GIN; Wen XD; Zhang T
    Adv Mater; 2021 Sep; 33(36):e2103248. PubMed ID: 34302400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysts for the Conversion of CO
    Pawelec B; Guil-López R; Mota N; Fierro JLG; Navarro Yerga RM
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Conversion of Syngas to Light Olefins through Fischer-Tropsch Synthesis over Fe-Zr Catalysts Modified with Sodium.
    Ma Z; Ma H; Zhang H; Wu X; Qian W; Sun Q; Ying W
    ACS Omega; 2021 Feb; 6(7):4968-4976. PubMed ID: 33644604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO
    Su J; Zhou H; Liu S; Wang C; Jiao W; Wang Y; Liu C; Ye Y; Zhang L; Zhao Y; Liu H; Wang D; Yang W; Xie Z; He M
    Nat Commun; 2019 Mar; 10(1):1297. PubMed ID: 30899003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Conversion of Syngas to Olefins via Novel Cu-Promoted Fe/RGO and Fe-Mn/RGO Fischer-Tropsch Catalysts: Fixed-Bed Reactor vs Slurry-Bed Reactor.
    Nasser AH; El-Bery HM; ELnaggar H; Basha IK; El-Moneim AA
    ACS Omega; 2021 Nov; 6(46):31099-31111. PubMed ID: 34841152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor.
    Nasser AH; Guo L; ELnaggar H; Wang Y; Guo X; AbdelMoneim A; Tsubaki N
    RSC Adv; 2018 Apr; 8(27):14854-14863. PubMed ID: 35541361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear α-olefin production with Na-promoted Fe-Zn catalysts
    Yang S; Lee S; Kang SC; Han SJ; Jun KW; Lee KY; Kim YT
    RSC Adv; 2019 May; 9(25):14176-14187. PubMed ID: 35519344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxide-Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light.
    Zhao Y; Zhao B; Liu J; Chen G; Gao R; Yao S; Li M; Zhang Q; Gu L; Xie J; Wen X; Wu LZ; Tung CH; Ma D; Zhang T
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4215-9. PubMed ID: 26915824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Transformation of CO
    Dang S; Li S; Yang C; Chen X; Li X; Zhong L; Gao P; Sun Y
    ChemSusChem; 2019 Aug; 12(15):3582-3591. PubMed ID: 31197936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins
    Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y
    Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Biomass Gasification Mineral Residue as Catalyst to Produce Light Olefins from CO, CO
    Ten Have IC; van den Brink RY; Marie-Rose SC; Meirer F; Weckhuysen BM
    ChemSusChem; 2022 Jun; 15(11):e202200436. PubMed ID: 35294803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective conversion of syngas to light olefins.
    Jiao F; Li J; Pan X; Xiao J; Li H; Ma H; Wei M; Pan Y; Zhou Z; Li M; Miao S; Li J; Zhu Y; Xiao D; He T; Yang J; Qi F; Fu Q; Bao X
    Science; 2016 Mar; 351(6277):1065-8. PubMed ID: 26941314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Zr loading into In
    Portillo A; Ateka A; Ereña J; Bilbao J; Aguayo AT
    J Environ Manage; 2022 Aug; 316():115329. PubMed ID: 35658264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.