These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector. Ukegbu CV; Giorgalli M; Tapanelli S; Rona LDP; Jaye A; Wyer C; Angrisano F; Blagborough AM; Christophides GK; Vlachou D Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7363-7373. PubMed ID: 32165544 [TBL] [Abstract][Full Text] [Related]
4. An improved method for the in vitro differentiation of Plasmodium falciparum gametocytes into ookinetes. Ghosh AK; Dinglasan RR; Ikadai H; Jacobs-Lorena M Malar J; 2010 Jul; 9():194. PubMed ID: 20615232 [TBL] [Abstract][Full Text] [Related]
5. Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes. van Schaijk BC; Kumar TR; Vos MW; Richman A; van Gemert GJ; Li T; Eappen AG; Williamson KC; Morahan BJ; Fishbaugher M; Kennedy M; Camargo N; Khan SM; Janse CJ; Sim KL; Hoffman SL; Kappe SH; Sauerwein RW; Fidock DA; Vaughan AM Eukaryot Cell; 2014 May; 13(5):550-9. PubMed ID: 24297444 [TBL] [Abstract][Full Text] [Related]
6. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii. Noden BH; Vaughan JA; Pumpuni CB; Beier JC Parasitol Int; 2011 Dec; 60(4):440-6. PubMed ID: 21763778 [TBL] [Abstract][Full Text] [Related]
7. Ookinete destruction within the mosquito midgut lumen explains Anopheles albimanus refractoriness to Plasmodium falciparum (3D7A) oocyst infection. Baton LA; Ranford-Cartwright LC Int J Parasitol; 2012; 42(3):249-58. PubMed ID: 22366731 [TBL] [Abstract][Full Text] [Related]
8. SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Dessens JT; Sidén-Kiamos I; Mendoza J; Mahairaki V; Khater E; Vlachou D; Xu XJ; Kafatos FC; Louis C; Dimopoulos G; Sinden RE Mol Microbiol; 2003 Jul; 49(2):319-29. PubMed ID: 12828632 [TBL] [Abstract][Full Text] [Related]
9. Late sporogonic stages of Zeineddine S; Jaber S; Saab SA; Nakhleh J; Dimopoulos G; Osta MA Front Cell Infect Microbiol; 2024; 14():1438019. PubMed ID: 39149419 [TBL] [Abstract][Full Text] [Related]
10. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X. Li F; Bounkeua V; Pettersen K; Vinetz JM Malar J; 2016 Feb; 15():111. PubMed ID: 26911483 [TBL] [Abstract][Full Text] [Related]
11. Plasmodium falciparum ookinete invasion of the midgut epithelium of Anopheles stephensi is consistent with the Time Bomb model. Baton LA; Ranford-Cartwright LC Parasitology; 2004 Dec; 129(Pt 6):663-76. PubMed ID: 15648689 [TBL] [Abstract][Full Text] [Related]
12. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. Lasonder E; Janse CJ; van Gemert GJ; Mair GR; Vermunt AM; Douradinha BG; van Noort V; Huynen MA; Luty AJ; Kroeze H; Khan SM; Sauerwein RW; Waters AP; Mann M; Stunnenberg HG PLoS Pathog; 2008 Oct; 4(10):e1000195. PubMed ID: 18974882 [TBL] [Abstract][Full Text] [Related]
13. Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes. Zollner GE; Ponsa N; Garman GW; Poudel S; Bell JA; Sattabongkot J; Coleman RE; Vaughan JA Malar J; 2006 Aug; 5():68. PubMed ID: 16887043 [TBL] [Abstract][Full Text] [Related]
14. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach. Basseri HR; Javazm MS; Farivar L; Abai MR Acta Trop; 2016 Apr; 156():37-42. PubMed ID: 26772447 [TBL] [Abstract][Full Text] [Related]
15. PfCap380 as a marker for Plasmodium falciparum oocyst development in vivo and in vitro. Itsara LS; Zhou Y; Do J; Dungel S; Fishbaugher ME; Betz WW; Nguyen T; Navarro MJ; Flannery EL; Vaughan AM; Kappe SHI; Ghosh AK Malar J; 2018 Apr; 17(1):135. PubMed ID: 29609625 [TBL] [Abstract][Full Text] [Related]
16. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Alavi Y; Arai M; Mendoza J; Tufet-Bayona M; Sinha R; Fowler K; Billker O; Franke-Fayard B; Janse CJ; Waters A; Sinden RE Int J Parasitol; 2003 Aug; 33(9):933-43. PubMed ID: 12906877 [TBL] [Abstract][Full Text] [Related]
17. Additional Feeding Reveals Differences in Immune Recognition and Growth of Kwon H; Simões ML; Reynolds RA; Dimopoulos G; Smith RC mSphere; 2021 Mar; 6(2):. PubMed ID: 33789941 [TBL] [Abstract][Full Text] [Related]
18. Interactions of human malaria parasites, Plasmodium vivax and P.falciparum, with the midgut of Anopheles mosquitoes. Ramasamy MS; Kulasekera R; Wanniarachchi IC; Srikrishnaraj KA; Ramasamy R Med Vet Entomol; 1997 Jul; 11(3):290-6. PubMed ID: 9330262 [TBL] [Abstract][Full Text] [Related]
19. Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa. Mendes AM; Schlegelmilch T; Cohuet A; Awono-Ambene P; De Iorio M; Fontenille D; Morlais I; Christophides GK; Kafatos FC; Vlachou D PLoS Pathog; 2008 May; 4(5):e1000069. PubMed ID: 18483558 [TBL] [Abstract][Full Text] [Related]
20. Chimeric Plasmodium falciparum parasites expressing Plasmodium vivax circumsporozoite protein fail to produce salivary gland sporozoites. Marin-Mogollon C; van Pul FJA; Miyazaki S; Imai T; Ramesar J; Salman AM; Winkel BMF; Othman AS; Kroeze H; Chevalley-Maurel S; Reyes-Sandoval A; Roestenberg M; Franke-Fayard B; Janse CJ; Khan SM Malar J; 2018 Aug; 17(1):288. PubMed ID: 30092798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]