These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29873136)

  • 1. Polyimide Fibers with High Strength and High Modulus: Preparation, Structures, Properties, and Applications.
    Zhang M; Niu H; Wu D
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800141. PubMed ID: 29873136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects.
    Yoonessi M; Shi Y; Scheiman DA; Lebron-Colon M; Tigelaar DM; Weiss RA; Meador MA
    ACS Nano; 2012 Sep; 6(9):7644-55. PubMed ID: 22931435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers.
    Wang S; Jiang F; Xu X; Kuang Y; Fu K; Hitz E; Hu L
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28731208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning array morphology for high-strength carbon-nanotube fibers.
    Zheng L; Sun G; Zhan Z
    Small; 2010 Jan; 6(1):132-7. PubMed ID: 19902432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Heating Rate on the Structure and Mechanical Properties of Aromatic BPDA-PDA Polyimide Fiber.
    Yang W; Liu F; Chen H; Dai X; Liu W; Qiu X; Ji X
    Polymers (Basel); 2020 Feb; 12(3):. PubMed ID: 32120770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of polyimide/graphene nanosheet composite fibers
    Jia W; Zhou L; Jiang M; Du J; Zhang M; Han E; Niu H; Wu D
    RSC Adv; 2021 Oct; 11(52):32647-32653. PubMed ID: 35493586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Preparation of Continuous and Porous Polyimide Aerogel Fibers for Multifunctional Applications.
    Li M; Gan F; Dong J; Fang Y; Zhao X; Zhang Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10416-10427. PubMed ID: 33595283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.
    Albanna MZ; Bou-Akl TH; Blowytsky O; Walters HL; Matthew HW
    J Mech Behav Biomed Mater; 2013 Apr; 20():217-26. PubMed ID: 23465267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite-reinforced alginate fibers with bioinspired dually aligned architectures.
    Wan F; Ping H; Wang W; Zou Z; Xie H; Su BL; Liu D; Fu Z
    Carbohydr Polym; 2021 Sep; 267():118167. PubMed ID: 34119140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial Polyelectrolyte Complex Spinning of Cellulose Nanofibrils for Advanced Bicomponent Fibers.
    Toivonen MS; Kurki-Suonio S; Wagermaier W; Hynninen V; Hietala S; Ikkala O
    Biomacromolecules; 2017 Apr; 18(4):1293-1301. PubMed ID: 28262019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.
    Tian M; Qu L; Zhang X; Zhang K; Zhu S; Guo X; Han G; Tang X; Sun Y
    Carbohydr Polym; 2014 Oct; 111():456-62. PubMed ID: 25037375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melt-spun shaped fibers with enhanced surface effects: fiber fabrication, characterization and application to woven scaffolds.
    Park SJ; Lee BK; Na MH; Kim DS
    Acta Biomater; 2013 Aug; 9(8):7719-26. PubMed ID: 23669620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical testing of electrospun PCL fibers.
    Croisier F; Duwez AS; Jérôme C; Léonard AF; van der Werf KO; Dijkstra PJ; Bennink ML
    Acta Biomater; 2012 Jan; 8(1):218-24. PubMed ID: 21878398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New material for implantable cardiac leads.
    Lobodzinski SS; Laks M
    J Electrocardiol; 2009; 42(6):566-73. PubMed ID: 19853730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Versatile Disorder-to-Order Technology to Upgrade Polymers into High-Performance Bioinspired Materials.
    Liu S; He S; Chen C; Li C; Luo W; Zheng K; Wang J; Li Z; He H; Chen Q; Li Y
    Adv Healthc Mater; 2023 Sep; 12(22):e2300068. PubMed ID: 37269485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneously strong and tough ultrafine continuous nanofibers.
    Papkov D; Zou Y; Andalib MN; Goponenko A; Cheng SZ; Dzenis YA
    ACS Nano; 2013 Apr; 7(4):3324-31. PubMed ID: 23464637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen multifilament spinning.
    Tonndorf R; Aibibu D; Cherif C
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110105. PubMed ID: 31753356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties and Corrosion Performance of Self-reinforced Composite PEEK for Proposed Use as a Modular Taper Gasket.
    Ouellette ES; Gilbert JL
    Clin Orthop Relat Res; 2016 Nov; 474(11):2414-2427. PubMed ID: 27146655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers.
    Yao J; Chen S; Chen Y; Wang B; Pei Q; Wang H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20330-20339. PubMed ID: 28045246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.