These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29873484)

  • 1. Druggability Assessment of Targets Used in Kinetic Target-Guided Synthesis.
    Unver MY; Gierse RM; Ritchie H; Hirsch AKH
    J Med Chem; 2018 Nov; 61(21):9395-9409. PubMed ID: 29873484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic Target-Guided Synthesis: Reaching the Age of Maturity.
    Bosc D; Camberlein V; Gealageas R; Castillo-Aguilera O; Deprez B; Deprez-Poulain R
    J Med Chem; 2020 Apr; 63(8):3817-3833. PubMed ID: 31820982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailored Bioorthogonal and Bioconjugate Chemistry: A Source of Inspiration for Developing Kinetic Target-Guided Synthesis Strategies.
    Lossouarn A; Renard PY; Sabot C
    Bioconjug Chem; 2021 Jan; 32(1):63-72. PubMed ID: 33232599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going beyond Binary: Rapid Identification of Protein-Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach.
    Nacheva K; Kulkarni SS; Kassu M; Flanigan D; Monastyrskyi A; Iyamu ID; Doi K; Barber M; Namelikonda N; Tipton JD; Parvatkar P; Wang HG; Manetsch R
    J Med Chem; 2023 Apr; 66(7):5196-5207. PubMed ID: 37000900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Induced Unlocking Reactivity of Fragments for Fast Target-Guided Synthesis of Carbonic Anhydrase Inhibitors.
    Puteaux C; Toubia I; Truong L; Hubert-Roux M; Bailly L; Oulyadi H; Renard PY; Sabot C
    Angew Chem Int Ed Engl; 2024 Jul; ():e202407888. PubMed ID: 39003572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into the kinetic target-guided synthesis of protein ligands.
    Oueis E; Sabot C; Renard PY
    Chem Commun (Camb); 2015 Aug; 51(61):12158-69. PubMed ID: 26144842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.
    Hussein HA; Borrel A; Geneix C; Petitjean M; Regad L; Camproux AC
    Nucleic Acids Res; 2015 Jul; 43(W1):W436-42. PubMed ID: 25956651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Frontiers in Druggability.
    Kozakov D; Hall DR; Napoleon RL; Yueh C; Whitty A; Vajda S
    J Med Chem; 2015 Dec; 58(23):9063-88. PubMed ID: 26230724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Success of Drug Targets Prospectively Predicted by In Silico Study.
    Zhu F; Li XX; Yang SY; Chen YZ
    Trends Pharmacol Sci; 2018 Mar; 39(3):229-231. PubMed ID: 29295742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrocycles: MCR synthesis and applications in drug discovery.
    Abdelraheem EMM; Shaabani S; Dömling A
    Drug Discov Today Technol; 2018 Nov; 29():11-17. PubMed ID: 30471668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug-like density: a method of quantifying the "bindability" of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank.
    Sheridan RP; Maiorov VN; Holloway MK; Cornell WD; Gao YD
    J Chem Inf Model; 2010 Nov; 50(11):2029-40. PubMed ID: 20977231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragments and hot spots in drug discovery.
    Vajda S; Whitty A; Kozakov D
    Oncotarget; 2015 Aug; 6(22):18740-1. PubMed ID: 26300051
    [No Abstract]   [Full Text] [Related]  

  • 13. Monoamine oxidases: the biochemistry of the proteins as targets in medicinal chemistry and drug discovery.
    Ramsay RR
    Curr Top Med Chem; 2012; 12(20):2189-209. PubMed ID: 23231396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-kinetic relationships that control the residence time of drug-target complexes: insights from molecular structure and dynamics.
    Lu H; Iuliano JN; Tonge PJ
    Curr Opin Chem Biol; 2018 Jun; 44():101-109. PubMed ID: 29986213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining global and local measures for structure-based druggability predictions.
    Volkamer A; Kuhn D; Grombacher T; Rippmann F; Rarey M
    J Chem Inf Model; 2012 Feb; 52(2):360-72. PubMed ID: 22148551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Druggability Limits for Enzymes of the NAD Biosynthetic Network in Glioma.
    Padiadpu J; Mishra M; Sharma E; Mala U; Somasundaram K; Chandra N
    J Chem Inf Model; 2016 May; 56(5):843-53. PubMed ID: 26958865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Target Families: Intractable Targets.
    Knapp S
    Handb Exp Pharmacol; 2016; 232():43-58. PubMed ID: 26552403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic vs. target-based drug discovery for first-in-class medicines.
    Swinney DC
    Clin Pharmacol Ther; 2013 Apr; 93(4):299-301. PubMed ID: 23511784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a rule-based method for the assessment of protein druggability.
    Perola E; Herman L; Weiss J
    J Chem Inf Model; 2012 Apr; 52(4):1027-38. PubMed ID: 22448735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Discovery of drug targets and seeds by 'humanized yeast' technology].
    Mizukami T; Kunoh T; Sasaki R
    Nihon Rinsho; 2012 Nov; 70 Suppl 8():308-15. PubMed ID: 23513857
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.