These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 29873656)
1. Highly sensitive gating in pH-responsive nanochannels as a result of ionic bridging and nanoconfinement. Lopez LG; Nap RJ Phys Chem Chem Phys; 2018 Jun; 20(24):16657-16665. PubMed ID: 29873656 [TBL] [Abstract][Full Text] [Related]
2. Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters. Tagliazucchi M; Azzaroni O; Szleifer I J Am Chem Soc; 2010 Sep; 132(35):12404-11. PubMed ID: 20718436 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes. Chen G; Das S Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317 [TBL] [Abstract][Full Text] [Related]
4. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel. Pial TH; Das S J Phys Chem B; 2022 Dec; 126(49):10543-10553. PubMed ID: 36454705 [TBL] [Abstract][Full Text] [Related]
5. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Yameen B; Ali M; Neumann R; Ensinger W; Knoll W; Azzaroni O Nano Lett; 2009 Jul; 9(7):2788-93. PubMed ID: 19518086 [TBL] [Abstract][Full Text] [Related]
6. Ionic Transport and Robust Switching Properties of the Confined Self-Assembled Block Copolymer/Homopolymer in Asymmetric Nanochannels. Wang J; Liu L; Yan G; Li Y; Gao Y; Tian Y; Jiang L ACS Appl Mater Interfaces; 2021 Mar; 13(12):14507-14517. PubMed ID: 33733727 [TBL] [Abstract][Full Text] [Related]
7. Design of Multifunctional Nanopore Using Polyampholyte Brush with Composition Gradient. Qin S; Huang K; Szleifer I ACS Nano; 2021 Nov; 15(11):17678-17688. PubMed ID: 34708653 [TBL] [Abstract][Full Text] [Related]
8. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Sachar HS; Sivasankar VS; Etha SA; Chen G; Das S Electrophoresis; 2020 Apr; 41(7-8):554-561. PubMed ID: 31541559 [TBL] [Abstract][Full Text] [Related]
9. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. de Groot GW; Santonicola MG; Sugihara K; Zambelli T; Reimhult E; Vörös J; Vancso GJ ACS Appl Mater Interfaces; 2013 Feb; 5(4):1400-7. PubMed ID: 23360664 [TBL] [Abstract][Full Text] [Related]
10. Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. Yameen B; Ali M; Neumann R; Ensinger W; Knoll W; Azzaroni O J Am Chem Soc; 2009 Feb; 131(6):2070-1. PubMed ID: 19159287 [TBL] [Abstract][Full Text] [Related]
11. The interplay of nanointerface curvature and calcium binding in weak polyelectrolyte-coated nanoparticles. Nap RJ; Gonzalez Solveyra E; Szleifer I Biomater Sci; 2018 May; 6(5):1048-1058. PubMed ID: 29652053 [TBL] [Abstract][Full Text] [Related]
12. Reduced Ionic Conductivity but Enhanced Local Ionic Conductivity in Nanochannels. Zhou K; Jiao S; Chen Y; Qin H; Liu Y Langmuir; 2021 Nov; 37(43):12577-12585. PubMed ID: 34672598 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and Characterization of Stimuli-Responsive Polymer Brushes in Nanofluidic Channels. Rahmaninejad H; Parnell AJ; Chen WL; Duzen N; Sexton T; Dunderdale G; Ankner JF; Bras W; Ober CK; Ryan AJ; Ashkar R ACS Appl Mater Interfaces; 2023 Nov; 15(47):54942-54951. PubMed ID: 37973616 [TBL] [Abstract][Full Text] [Related]
14. Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. Ali M; Yameen B; Cervera J; Ramírez P; Neumann R; Ensinger W; Knoll W; Azzaroni O J Am Chem Soc; 2010 Jun; 132(24):8338-48. PubMed ID: 20518503 [TBL] [Abstract][Full Text] [Related]
15. Insights into the Role of Counterions on Polyelectrolyte-Modified Nanopore Accessibility. Silies L; Gonzalez Solveyra E; Szleifer I; Andrieu-Brunsen A Langmuir; 2018 May; 34(20):5943-5953. PubMed ID: 29737850 [TBL] [Abstract][Full Text] [Related]
16. Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels. Liu Q; Xiao K; Wen L; Lu H; Liu Y; Kong XY; Xie G; Zhang Z; Bo Z; Jiang L J Am Chem Soc; 2015 Sep; 137(37):11976-83. PubMed ID: 26340444 [TBL] [Abstract][Full Text] [Related]
18. Design, synthesis and application of a new class of stimuli-responsive separation materials. Sepehrifar R; Boysen RI; Danylec B; Yang Y; Saito K; Hearn MT Anal Chim Acta; 2017 Apr; 963():153-163. PubMed ID: 28335969 [TBL] [Abstract][Full Text] [Related]
19. Bioinspired Dual Stimuli-Responsive Membranous System with Multiple On-Off Gates. Lee BY; Hyun S; Jeon G; Kim EY; Kim J; Kim WJ; Kim JK ACS Appl Mater Interfaces; 2016 May; 8(18):11758-64. PubMed ID: 27089551 [TBL] [Abstract][Full Text] [Related]
20. Bioinspired Smart Gate-Location-Controllable Single Nanochannels: Experiment and Theoretical Simulation. Zhang H; Tian Y; Hou J; Hou X; Hou G; Ou R; Wang H; Jiang L ACS Nano; 2015 Dec; 9(12):12264-73. PubMed ID: 26474219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]