These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29873725)

  • 21. The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions.
    Roberts TJ; Azizi E
    J Appl Physiol (1985); 2010 Aug; 109(2):396-404. PubMed ID: 20507964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. No functionally relevant mechanical effects of epimuscular myofascial connections between rat ankle plantar flexors.
    Tijs C; van Dieën JH; Maas H
    J Exp Biol; 2015 Sep; 218(Pt 18):2935-41. PubMed ID: 26206361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passive elongation of muscle fascicles in human muscles with short and long tendons.
    Thom JM; Diong J; Stubbs PW; Herbert RD
    Physiol Rep; 2017 Dec; 5(23):. PubMed ID: 29192068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compartmental fasciotomy and isolating a muscle from neighboring muscles interfere with myofascial force transmission within the rat anterior crural compartment.
    Huijing PA; Maas H; Baan GC
    J Morphol; 2003 Jun; 256(3):306-21. PubMed ID: 12655613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myofascial force transmission is increasingly important at lower forces: firing frequency-related length-force characteristics of rat extensor digitorum longus.
    Meijer HJ; Baan GC; Huijing PA
    Acta Physiol (Oxf); 2006 Mar; 186(3):185-95. PubMed ID: 16497198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myofascial force transmission also occurs between antagonistic muscles located within opposite compartments of the rat lower hind limb.
    Rijkelijkhuizen JM; Meijer HJ; Baan GC; Huijing PA
    J Electromyogr Kinesiol; 2007 Dec; 17(6):690-7. PubMed ID: 17383201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Force summation between muscles: are muscles independent actuators?
    Sandercock TG; Maas H
    Med Sci Sports Exerc; 2009 Jan; 41(1):184-90. PubMed ID: 19092690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle power attenuation by tendon during energy dissipation.
    Konow N; Azizi E; Roberts TJ
    Proc Biol Sci; 2012 Mar; 279(1731):1108-13. PubMed ID: 21957134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in muscle spindle firing in response to length changes of neighboring muscles.
    Smilde HA; Vincent JA; Baan GC; Nardelli P; Lodder JC; Mansvelder HD; Cope TC; Maas H
    J Neurophysiol; 2016 Jun; 115(6):3146-55. PubMed ID: 27075540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion.
    Prilutsky BI; Herzog W; Leonard TR; Allinger TL
    J Biomech; 1996 Apr; 29(4):417-34. PubMed ID: 8964771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic and antagonistic interactions in the rat forelimb: acute effects of coactivation.
    Maas H; Huijing PA
    J Appl Physiol (1985); 2009 Nov; 107(5):1453-62. PubMed ID: 19745195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between fascicles and tendinous tissues in gastrocnemius medialis and vastus lateralis during drop landing.
    Hollville E; Nordez A; Guilhem G; Lecompte J; Rabita G
    Scand J Med Sci Sports; 2019 Jan; 29(1):55-70. PubMed ID: 30242912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.
    Stubbs PW; Walsh LD; D'Souza A; Héroux ME; Bolsterlee B; Gandevia SC; Herbert RD
    J Physiol; 2018 Jun; 596(11):2121-2129. PubMed ID: 29604053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A lumped stiffness model of intermuscular and extramuscular myofascial pathways of force transmission.
    Bernabei M; Maas H; van Dieën JH
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1747-1763. PubMed ID: 27193153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of isometric training at short and long muscle-tendon unit lengths on the history dependence of force.
    Hinks A; Davidson B; Akagi R; Power GA
    Scand J Med Sci Sports; 2021 Feb; 31(2):325-338. PubMed ID: 33038040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit.
    Hoyt DF; Wickler SJ; Biewener AA; Cogger EA; De La Paz KL
    J Exp Biol; 2005 Mar; 208(Pt 6):1175-90. PubMed ID: 15767316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of muscle-tendon unit vs. fascicle analyses on vastus lateralis force-generating capacity during constant power output cycling with variable cadence.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    J Appl Physiol (1985); 2018 Apr; 124(4):993-1002. PubMed ID: 29357487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of goat distal hind limb muscle-tendon function in response to locomotor grade.
    McGuigan MP; Yoo E; Lee DV; Biewener AA
    J Exp Biol; 2009 Jul; 212(Pt 13):2092-104. PubMed ID: 19525436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output.
    Scott SH; Brown IE; Loeb GE
    J Muscle Res Cell Motil; 1996 Apr; 17(2):207-19. PubMed ID: 8793723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic Co-activation Increases the Extent of Mechanical Interaction between Rat Ankle Plantar-Flexors.
    Tijs C; van Dieën JH; Baan GC; Maas H
    Front Physiol; 2016; 7():414. PubMed ID: 27708589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.