BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 29873819)

  • 1. Automatic diameter and orientation distribution determination of fibrous materials in micro X-ray CT imaging data.
    Chiverton JP; Kao A; Roldo M; Tozzi G
    J Microsc; 2018 Dec; 272(3):180-195. PubMed ID: 29873819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution x-ray tomographic morphological characterisation of electrospun nanofibrous bundles for tendon and ligament regeneration and replacement.
    Sensini A; Cristofolini L; Focarete ML; Belcari J; Zucchelli A; Kao A; Tozzi G
    J Microsc; 2018 Dec; 272(3):196-206. PubMed ID: 29797707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlating diameter, mechanical and structural properties of poly(l-lactide) fibres from needleless electrospinning.
    Morel A; Domaschke S; Urundolil Kumaran V; Alexeev D; Sadeghpour A; Ramakrishna SN; Ferguson SJ; Rossi RM; Mazza E; Ehret AE; Fortunato G
    Acta Biomater; 2018 Nov; 81():169-183. PubMed ID: 30273744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray computed tomography evaluations of additive manufactured multimaterial composites.
    Curto M; Kao AP; Keeble W; Tozzi G; Barber AH
    J Microsc; 2022 Mar; 285(3):131-143. PubMed ID: 34057229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of techniques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo.
    Disney CM; Lee PD; Hoyland JA; Sherratt MJ; Bay BK
    J Microsc; 2018 Dec; 272(3):165-179. PubMed ID: 29655273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume orientation: a practical solution to analyse the orientation of fibres in composite materials.
    DE Pascalis F; Nacucchi M
    J Microsc; 2019 Oct; 276(1):27-38. PubMed ID: 31541459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithm to determine orientation distribution function from microscopic images of fibrous networks: Validation with X-ray microtomography.
    Hewavidana Y; Balci MN; Gleadall A; Pourdeyhimi B; Silberschmidt VV; Demirci E
    Micron; 2022 Sep; 160():103321. PubMed ID: 35834874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual fibre separation in 3D fibrous materials imaged by X-ray tomography.
    Depriester D; Rolland du Roscoat S; Orgéas L; Geindreau C; Levrard B; Brémond F
    J Microsc; 2022 Jun; 286(3):220-239. PubMed ID: 35244940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D multiscale imaging of human vocal folds using synchrotron X-ray microtomography in phase retrieval mode.
    Bailly L; Cochereau T; Orgéas L; Henrich Bernardoni N; Rolland du Roscoat S; McLeer-Florin A; Robert Y; Laval X; Laurencin T; Chaffanjon P; Fayard B; Boller E
    Sci Rep; 2018 Sep; 8(1):14003. PubMed ID: 30228304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Registering 2D and 3D imaging data of bone during healing.
    Hoerth RM; Baum D; Knötel D; Prohaska S; Willie BM; Duda GN; Hege HC; Fratzl P; Wagermaier W
    Connect Tissue Res; 2015 Apr; 56(2):133-43. PubMed ID: 25825970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated reconstruction of curvilinear fibres from 3D datasets acquired by X-ray microtomography.
    Eberhardt CN; Clarke AR
    J Microsc; 2002 Apr; 206(Pt 1):41-53. PubMed ID: 12000562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.
    O'Dell WG; Gormaley AK; Prida DA
    Med Phys; 2017 Dec; 44(12):6314-6328. PubMed ID: 28905390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Note on the use of different approaches to determine the pore sizes of tissue engineering scaffolds: what do we measure?
    Bartoš M; Suchý T; Foltán R
    Biomed Eng Online; 2018 Aug; 17(1):110. PubMed ID: 30119672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale and multimodal X-ray analysis: Quantifying phase orientation and morphology of mineralized turkey leg tendons.
    Maurya AK; Parrilli A; Kochetkova T; Schwiedrzik J; Dommann A; Neels A
    Acta Biomater; 2021 Jul; 129():169-177. PubMed ID: 34052502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional computation of fibre orientation, diameter and branching in segmented image stacks of fibrous networks.
    Eekhoff JD; Lake SP
    J R Soc Interface; 2020 Aug; 17(169):20200371. PubMed ID: 32752994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of biopolymer-based staple electrospun fibres for nanocomposite applications by particle-assisted low temperature ultrasonication.
    Mulky E; Yazgan G; Maniura-Weber K; Luginbuehl R; Fortunato G; Bühlmann-Popa AM
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():277-86. PubMed ID: 25491830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proposal of microtomography evaluation for restoration interface gaps.
    Meleo D; Manzon L; Pecci R; Zuppante F; Bedini R
    Ann Ist Super Sanita; 2012; 48(1):83-8. PubMed ID: 22456021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D micro-CT analysis of the interface voids associated with Thermafil root fillings used with AH Plus or a flowable MTA sealer.
    Gandolfi MG; Parrilli AP; Fini M; Prati C; Dummer PM
    Int Endod J; 2013 Mar; 46(3):253-63. PubMed ID: 23039158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D variations in human crown dentin tubule orientation: a phase-contrast microtomography study.
    Zaslansky P; Zabler S; Fratzl P
    Dent Mater; 2010 Jan; 26(1):e1-10. PubMed ID: 19879641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.