These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29874041)

  • 1. A Reduction in Particle Size Generally Causes Body-Centered-Cubic Metals to Expand but Face-Centered-Cubic Metals to Contract.
    Nafday D; Sarkar S; Ayyub P; Saha-Dasgupta T
    ACS Nano; 2018 Jul; 12(7):7246-7252. PubMed ID: 29874041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals.
    Wang F; Han Y
    J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.
    Lee S; Hoffmann R
    J Am Chem Soc; 2002 May; 124(17):4811-23. PubMed ID: 11971731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the electronic structure of elemental lithium: from small molecules to nanoclusters, bulk metal, and surfaces.
    Rousseau R; Marx D
    Chemistry; 2000 Aug; 6(16):2982-93. PubMed ID: 10993259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of Body-Centered Cubic Gold Nanocluster.
    Liu C; Li T; Li G; Nobusada K; Zeng C; Pang G; Rosi NL; Jin R
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):9826-9. PubMed ID: 26136241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the fcc-to-bcc phase transition in single-crystalline PdCu alloy nanoparticles.
    Jiang Y; Duchamp M; Ang SJ; Yan H; Tan TL; Mirsaidov U
    Nat Commun; 2023 Jan; 14(1):104. PubMed ID: 36609570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating superlattice polymorphs to internanoparticle distance, packing density, and surface lattice in assemblies of PbS nanoparticles.
    Wang Z; Schliehe C; Bian K; Dale D; Bassett WA; Hanrath T; Klinke C; Weller H
    Nano Lett; 2013 Mar; 13(3):1303-11. PubMed ID: 23394611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-controlled dislocation multiplication in metal micropillars.
    Weinberger CR; Cai W
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14304-7. PubMed ID: 18787126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature ferromagnetism in doped face-centered cubic fe nanoparticles.
    Wei B; Shima M; Pati R; Nayak SK; Singh DJ; Ma R; Li Y; Bando Y; Nasu S; Ajayan PM
    Small; 2006 Jun; 2(6):804-9. PubMed ID: 17193125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Hexagonal-Close Packed (HCP) Rhodium as a Size Effect.
    Huang JL; Li Z; Duan HH; Cheng ZY; Li YD; Zhu J; Yu R
    J Am Chem Soc; 2017 Jan; 139(2):575-578. PubMed ID: 28045542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.
    Wei Y; Chen S
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9457-63. PubMed ID: 26682366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BDA: A novel method for identifying defects in body-centered cubic crystals.
    Möller JJ; Bitzek E
    MethodsX; 2016; 3():279-88. PubMed ID: 27114926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverted core-shell potential energy landscape of icosahedral clusters in deeply undercooled metallic liquids and glasses and its effect on the glass forming ability of bcc and fcc metals.
    Xu D; Wang Z; Chang TY; Chen F
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32619208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent.
    Missoni LL; Tagliazucchi M
    ACS Nano; 2020 May; 14(5):5649-5658. PubMed ID: 32286787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum.
    Huang L; Li QJ; Shan ZW; Li J; Sun J; Ma E
    Nat Commun; 2011 Nov; 2():547. PubMed ID: 22109521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Characterization of Ru Cubic Nanocages with a Face-Centered Cubic Structure by Templating with Pd Nanocubes.
    Zhao M; Figueroa-Cosme L; Elnabawy AO; Vara M; Yang X; Roling LT; Chi M; Mavrikakis M; Xia Y
    Nano Lett; 2016 Aug; 16(8):5310-7. PubMed ID: 27458871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Missing Link: Au
    Sakthivel NA; Shabaninezhad M; Sementa L; Yoon B; Stener M; Whetten RL; Ramakrishna G; Fortunelli A; Landman U; Dass A
    J Am Chem Soc; 2020 Sep; 142(37):15799-15814. PubMed ID: 32881489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total Structure Determination of Au21(S-Adm)15 and Geometrical/Electronic Structure Evolution of Thiolated Gold Nanoclusters.
    Chen S; Xiong L; Wang S; Ma Z; Jin S; Sheng H; Pei Y; Zhu M
    J Am Chem Soc; 2016 Aug; 138(34):10754-7. PubMed ID: 27552520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids.
    Warshavsky VB; Ford DM; Monson PA
    J Chem Phys; 2018 Jan; 148(2):024502. PubMed ID: 29331120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.