These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2987407)

  • 1. Calcium- and calmodulin-dependent phosphorylation of diphosphoinositide in acetylcholine receptor-rich membranes from electroplax of Narke japonica.
    Hayashi F; Amakawa T
    J Neurochem; 1985 Jul; 45(1):124-31. PubMed ID: 2987407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP, not Ca2+/calmodulin, regulates the phosphorylation of acetylcholine receptor in Torpedo californica electroplax.
    Zavoico GB; Comerci C; Subers E; Egan JJ; Huang CK; Feinstein MB; Smilowitz H
    Biochim Biophys Acta; 1984 Mar; 770(2):225-9. PubMed ID: 6320888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of peripheral proteins is accompanied by selective depletion of certain glycerophospholipid classes and changes in the phosphorylation pattern of acetylcholine-receptor-rich-membrane proteins.
    Bonini de Romanelli IC; Roccamo de Fernández AM; Barrantes FJ
    Biochem J; 1987 Jul; 245(1):111-8. PubMed ID: 2822010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible modulation of phosphorylation of acetylcholine receptor-enriched membrane preparations.
    Carstens ME; Neethling AC; Taljaard JJ
    Neurochem Res; 1984 Feb; 9(2):195-206. PubMed ID: 6330594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of protein phosphorylation in acetylcholine receptor-enriched membrane preparations from Torpedo fuscomaculata.
    Carstens ME; Weller M; Neethling AC; Taljaard JJ
    Mol Cell Biochem; 1982 Feb; 42(3):161-6. PubMed ID: 6278288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A p60v-src-related tyrosine kinase in the acetylcholine receptor-rich membranes of Narke japonica: association and dissociation of phosphatidylinositol kinase activity.
    Fukami Y; Owada MK; Sumi M; Hayashi F
    Biochem Biophys Res Commun; 1986 Sep; 139(2):473-9. PubMed ID: 3094516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic AMP-dependent protein kinase and Ca2+-calmodulin stimulate the formation of polyphosphoinositides in a sarcoplasmic reticulum preparation of rabbit heart.
    Enyedi A; Faragó A; Sarkadi B; Gárdos G
    FEBS Lett; 1984 Oct; 176(1):235-8. PubMed ID: 6092135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+-sensitive phosphatidylinositol 4-phosphate metabolism in a rat beta-cell tumour.
    Tooke NE; Hales CN; Hutton JC
    Biochem J; 1984 Apr; 219(2):471-80. PubMed ID: 6331389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of acetylcholine receptor phosphorylation by calcium and calmodulin.
    Smilowitz H; Hadjian RA; Dwyer J; Feinstein MB
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4708-12. PubMed ID: 6946419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin.
    Ryu SH; Lee SY; Lee KY; Rhee SG
    FASEB J; 1987 Nov; 1(5):388-93. PubMed ID: 2824270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulatory effect of calmodulin antagonists on phospholipid base-exchange reactions in rabbit platelet membranes.
    Morikawa S; Taniguchi S; Mori H; Fujii K; Kumada K; Fujiwara M; Fujiwara M
    Biochem Pharmacol; 1986 Dec; 35(24):4473-7. PubMed ID: 3098251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible phosphorylation of the membrane-bound acetylcholine receptor.
    Gordon AS; Diamond I
    J Supramol Struct; 1980; 14(2):163-74. PubMed ID: 6262575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calmodulin and acetylcholine receptor clustering in embryonic chick myotubes.
    Tai HH; Connolly JA
    Eur J Cell Biol; 1986 Aug; 41(2):246-51. PubMed ID: 3758083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies of phosphorylation in rat mast cells (supplement 2). Diphosphoinositide kinase in rat mast cell granules].
    Tanaka T; Kurosawa M
    Nihon Yakurigaku Zasshi; 1987 May; 89(5):261-7. PubMed ID: 3040555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calmodulin stimulation of 45Ca2+ transport and protein phosphorylation in cholinergic synaptic vesicles.
    Rephaeli A; Parsons SM
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5783-7. PubMed ID: 6821125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of phosphatidylinositol associated with the nicotinic acetylcholine receptor of Torpedo californica.
    Kiehl R; Varsányi M; Neumann E
    Biochem Biophys Res Commun; 1987 Sep; 147(3):1251-8. PubMed ID: 2822042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-calmodulin stimulates inositol 1,4,5-trisphosphate kinase activity from insulin-secreting RINm5F cells.
    Biden TJ; Comte M; Cox JA; Wollheim CB
    J Biol Chem; 1987 Jul; 262(20):9437-40. PubMed ID: 3036860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible regulation of phospholipase C activity in human platelets by phosphatidylinositol 4',5'-bisphosphate.
    Graff G; Nahas N; Nikolopoulou M; Natarajan V; Schmid HH
    Arch Biochem Biophys; 1984 Jan; 228(1):299-308. PubMed ID: 6320736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ and calmodulin-sensitive inositol trisphosphate kinase from bovine parathyroid.
    Conigrave AD; Roufogalis BD
    Cell Calcium; 1989; 10(8):543-50. PubMed ID: 2559811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between acetylcholine receptor function and structural properties of membranes.
    Fong TM; McNamee MG
    Biochemistry; 1986 Feb; 25(4):830-40. PubMed ID: 3008814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.