BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 29874110)

  • 21. Gene expression profiling analysis of copper homeostasis in Arabidopsis thaliana.
    del Pozo T; Cambiazo V; González M
    Biochem Biophys Res Commun; 2010 Mar; 393(2):248-52. PubMed ID: 20117084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper: toxicological relevance and mechanisms.
    Gaetke LM; Chow-Johnson HS; Chow CK
    Arch Toxicol; 2014 Nov; 88(11):1929-38. PubMed ID: 25199685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells.
    Qian Y; Zheng Y; Abraham L; Ramos KS; Tiffany-Castiglioni E
    Brain Res Mol Brain Res; 2005 Apr; 134(2):323-32. PubMed ID: 15836927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.
    Gayomba SR; Jung HI; Yan J; Danku J; Rutzke MA; Bernal M; Krämer U; Kochian LV; Salt DE; Vatamaniuk OK
    Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distorted copper homeostasis with decreased sensitivity to cisplatin upon chaperone Atox1 deletion in Drosophila.
    Hua H; Günther V; Georgiev O; Schaffner W
    Biometals; 2011 Jun; 24(3):445-53. PubMed ID: 21465178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper transporters and chaperones: Their function on angiogenesis and cellular signalling.
    Bharathi Devi SR; Dhivya M A; Sulochana KN
    J Biosci; 2016 Sep; 41(3):487-96. PubMed ID: 27581939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carnosine modulates the Sp1-Slc31a1/Ctr1 copper-sensing system and influences copper homeostasis in murine CNS-derived cells.
    Barca A; Ippati S; Urso E; Vetrugno C; Storelli C; Maffia M; Romano A; Verri T
    Am J Physiol Cell Physiol; 2019 Feb; 316(2):C235-C245. PubMed ID: 30485136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in copper concentrations affect the protein levels but not the mRNA levels of copper chaperones in human umbilical vein endothelial cells.
    Dong D; Xu X; Yin W; Kang YJ
    Metallomics; 2014 Mar; 6(3):554-9. PubMed ID: 24343031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1.
    Miyayama T; Suzuki KT; Ogra Y
    Toxicol Appl Pharmacol; 2009 Jun; 237(2):205-13. PubMed ID: 19362104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular features of copper binding proteins involved in copper homeostasis.
    Inesi G
    IUBMB Life; 2017 Apr; 69(4):211-217. PubMed ID: 27896900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs.
    Safaei R; Howell SB
    Crit Rev Oncol Hematol; 2005 Jan; 53(1):13-23. PubMed ID: 15607932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interplay of the metallosensor CueR with two distinct CopZ chaperones defines copper homeostasis in
    Novoa-Aponte L; Ramírez D; Argüello JM
    J Biol Chem; 2019 Mar; 294(13):4934-4945. PubMed ID: 30718281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems.
    Migocka M
    IUBMB Life; 2015 Oct; 67(10):737-45. PubMed ID: 26422816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclophilin A: promising new target in cardiovascular therapy.
    Satoh K; Shimokawa H; Berk BC
    Circ J; 2010 Nov; 74(11):2249-56. PubMed ID: 20962430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper chaperones: personal escorts for metal ions.
    Field LS; Luk E; Culotta VC
    J Bioenerg Biomembr; 2002 Oct; 34(5):373-9. PubMed ID: 12539964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones.
    Hussain F; Wittung-Stafshede P
    Biochim Biophys Acta; 2007 Oct; 1774(10):1316-22. PubMed ID: 17881304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Cu chaperone CopZ is required for Cu homeostasis in Rhodobacter capsulatus and influences cytochrome cbb
    Utz M; Andrei A; Milanov M; Trasnea PI; Marckmann D; Daldal F; Koch HG
    Mol Microbiol; 2019 Mar; 111(3):764-783. PubMed ID: 30582886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Biological regulation of copper and selective removal of copper: therapy for Wilson disease and its molecular mechanism].
    Suzuki KT; Ogura Y
    Yakugaku Zasshi; 2000 Oct; 120(10):899-908. PubMed ID: 11082702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems.
    Urso E; Maffia M
    J Vasc Res; 2015; 52(3):172-96. PubMed ID: 26484858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.