These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Gotcha N; Machekano H; Cuthbert RN; Nyamukondiwa C Insect Sci; 2021 Aug; 28(4):1076-1086. PubMed ID: 32567803 [TBL] [Abstract][Full Text] [Related]
3. Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Tarusikirwa VL; Mutamiswa R; English S; Chidawanyika F; Nyamukondiwa C J Therm Biol; 2020 May; 90():102598. PubMed ID: 32479393 [TBL] [Abstract][Full Text] [Related]
4. Life-stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). Mutamiswa R; Machekano H; Chidawanyika F; Nyamukondiwa C J Therm Biol; 2019 Jan; 79():85-94. PubMed ID: 30612691 [TBL] [Abstract][Full Text] [Related]
5. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855). Machekano H; Zidana C; Gotcha N; Nyamukondiwa C Sci Rep; 2021 Nov; 11(1):22192. PubMed ID: 34772933 [TBL] [Abstract][Full Text] [Related]
6. Comparative assessment of the thermal tolerance of spotted stemborer, Chilo partellus (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae (Hymenoptera: Braconidae). Mutamiswa R; Chidawanyika F; Nyamukondiwa C Insect Sci; 2018 Oct; 25(5):847-860. PubMed ID: 28374539 [TBL] [Abstract][Full Text] [Related]
7. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates. Everatt MJ; Bale JS; Convey P; Worland MR; Hayward SA J Insect Physiol; 2013 Oct; 59(10):1057-64. PubMed ID: 23973412 [TBL] [Abstract][Full Text] [Related]
8. Thermal resilience may shape population abundance of two sympatric congeneric Cotesia species (Hymenoptera: Braconidae). Mutamiswa R; Machekano H; Chidawanyika F; Nyamukondiwa C PLoS One; 2018; 13(2):e0191840. PubMed ID: 29438408 [TBL] [Abstract][Full Text] [Related]
9. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus. Caldwell AJ; While GM; Beeton NJ; Wapstra E J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494 [TBL] [Abstract][Full Text] [Related]
11. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. von May R; Catenazzi A; Santa-Cruz R; Gutierrez AS; Moritz C; Rabosky DL PLoS One; 2019; 14(8):e0219759. PubMed ID: 31369565 [TBL] [Abstract][Full Text] [Related]
12. Density-dependent ecosystem service delivery under shifting temperatures by dung beetles. Gotcha N; Cuthbert RN; Machekano H; Nyamukondiwa C Sci Total Environ; 2022 Feb; 807(Pt 1):150575. PubMed ID: 34634717 [TBL] [Abstract][Full Text] [Related]
13. Thermal tolerance responses of the two-spotted stink bug, Bathycoelia distincta (Hemiptera: Pentatomidae), vary with life stage and the sex of adults. Muluvhahothe MM; Joubert E; Foord SH J Therm Biol; 2023 Jan; 111():103395. PubMed ID: 36585076 [TBL] [Abstract][Full Text] [Related]
14. Temperature Tolerance and Thermal Environment of European Seed Bugs. Käfer H; Kovac H; Simov N; Battisti A; Erregger B; Schmidt AKD; Stabentheiner A Insects; 2020 Mar; 11(3):. PubMed ID: 32245048 [TBL] [Abstract][Full Text] [Related]
15. Complex body size differences in thermal tolerance among army ant workers (Eciton burchellii parvispinum). Baudier K; O'Donnell S J Therm Biol; 2018 Dec; 78():277-280. PubMed ID: 30509648 [TBL] [Abstract][Full Text] [Related]
16. Temporal variation of thermal sensitivity to global warming: Acclimatization in the guitarist beetle, Megelenophorus americanus (Coleoptera: Tenebrionidae) from the Monte Desert. Aragon-Traverso JH; Piñeiro M; Olivares JPS; Sanabria EA Comp Biochem Physiol A Mol Integr Physiol; 2023 Nov; 285():111505. PubMed ID: 37619666 [TBL] [Abstract][Full Text] [Related]
17. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). Baudier KM; Mudd AE; Erickson SC; O'Donnell S J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696 [TBL] [Abstract][Full Text] [Related]
18. Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants. Leahy L; Scheffers BR; Williams SE; Andersen AN Ecology; 2022 Jan; 103(1):e03549. PubMed ID: 34618920 [TBL] [Abstract][Full Text] [Related]
19. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115 [TBL] [Abstract][Full Text] [Related]
20. Sub-optimal host plants have developmental and thermal fitness costs to the invasive fall armyworm. Mubayiwa M; Machekano H; Chidawanyika F; Mvumi BM; Segaiso B; Nyamukondiwa C Front Insect Sci; 2023; 3():1204278. PubMed ID: 38469519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]