BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29874605)

  • 21. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation.
    Yu H; Han W; Ma W; Schulten K
    J Chem Phys; 2015 Dec; 143(24):243142. PubMed ID: 26723627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The chaperone activity of α-synuclein: Utilizing deletion mutants to map its interaction with target proteins.
    Rekas A; Ahn KJ; Kim J; Carver JA
    Proteins; 2012 May; 80(5):1316-25. PubMed ID: 22274962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing the Basis of α-Synuclein Aggregation by Comparing Simulations to Single-Molecule Experiments.
    Churchill CDM; Healey MA; Preto J; Tuszynski JA; Woodside MT
    Biophys J; 2019 Sep; 117(6):1125-1135. PubMed ID: 31477241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Segmental conformational disorder and dynamics in the intrinsically disordered protein α-synuclein and its chain length dependence.
    Grupi A; Haas E
    J Mol Biol; 2011 Feb; 405(5):1267-83. PubMed ID: 21108951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-Pronged Interactions Underlie Inhibition of α-Synuclein Aggregation by β-Synuclein.
    Williams JK; Yang X; Atieh TB; Olson MP; Khare SD; Baum J
    J Mol Biol; 2018 Aug; 430(16):2360-2371. PubMed ID: 29782835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The attachment of α-synuclein to a fiber: A coarse-grain approach.
    Ilie IM; den Otter WK; Briels WJ
    J Chem Phys; 2017 Mar; 146(11):115102. PubMed ID: 28330339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Coarse-Grained Molecular Dynamics Approach to the Study of the Intrinsically Disordered Protein α-Synuclein.
    Ramis R; Ortega-Castro J; Casasnovas R; Mariño L; Vilanova B; Adrover M; Frau J
    J Chem Inf Model; 2019 Apr; 59(4):1458-1471. PubMed ID: 30933517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting molecular properties of α-synuclein using force fields for intrinsically disordered proteins.
    Pedersen KB; Flores-Canales JC; Schiøtt B
    Proteins; 2023 Jan; 91(1):47-61. PubMed ID: 35950933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Effects of Two Camelid Nanobodies Directed to Distinct C-Terminal Epitopes on α-Synuclein.
    El-Turk F; Newby FN; De Genst E; Guilliams T; Sprules T; Mittermaier A; Dobson CM; Vendruscolo M
    Biochemistry; 2016 Jun; 55(22):3116-22. PubMed ID: 27096466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.
    Ilie IM; Nayar D; den Otter WK; van der Vegt NFA; Briels WJ
    J Chem Theory Comput; 2018 Jun; 14(6):3298-3310. PubMed ID: 29715424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular basis for the glycosphingolipid-binding specificity of α-synuclein: key role of tyrosine 39 in membrane insertion.
    Fantini J; Yahi N
    J Mol Biol; 2011 May; 408(4):654-69. PubMed ID: 21396938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origin of diverse time scales in the protein hydration layer solvation dynamics: A simulation study.
    Mondal S; Mukherjee S; Bagchi B
    J Chem Phys; 2017 Oct; 147(15):154901. PubMed ID: 29055291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-resolved FRET detection of subtle temperature-induced conformational biases in ensembles of α-synuclein molecules.
    Grupi A; Haas E
    J Mol Biol; 2011 Aug; 411(1):234-47. PubMed ID: 21570984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous and Allosteric Role of Surface Hydration for Protein-Ligand Binding.
    Shi J; Cho JH; Hwang W
    J Chem Theory Comput; 2023 Mar; 19(6):1875-1887. PubMed ID: 36820489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation.
    Ilie IM; den Otter WK; Briels WJ
    J Chem Phys; 2016 Feb; 144(8):085103. PubMed ID: 26931727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations.
    Rossetti G; Musiani F; Abad E; Dibenedetto D; Mouhib H; Fernandez CO; Carloni P
    Phys Chem Chem Phys; 2016 Feb; 18(8):5702-6. PubMed ID: 26553504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-molecule fluorescence studies of intrinsically disordered proteins.
    Ferreon AC; Moran CR; Gambin Y; Deniz AA
    Methods Enzymol; 2010; 472():179-204. PubMed ID: 20580965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring Intra- and Inter-Regional Interactions in the IDP α-Synuclein Using smFRET and MD Simulations.
    Heesink G; Marseille MJ; Fakhree MAA; Driver MD; van Leijenhorst-Groener KA; Onck PR; Blum C; Claessens MMAE
    Biomacromolecules; 2023 Aug; 24(8):3680-3688. PubMed ID: 37407505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aggregation propensities of proteins with varying degrees of disorder.
    Dey P; Biswas P
    J Comput Chem; 2023 Mar; 44(8):874-886. PubMed ID: 36468418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Dynamics Study to Investigate the Dimeric Structure of the Full-Length α-Synuclein in Aqueous Solution.
    Zhang T; Tian Y; Li Z; Liu S; Hu X; Yang Z; Ling X; Liu S; Zhang J
    J Chem Inf Model; 2017 Sep; 57(9):2281-2293. PubMed ID: 28796507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.