These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29874606)

  • 1. Context-Dependent Energetics of Loop Extensions in a Family of Tandem-Repeat Proteins.
    Perez-Riba A; Lowe AR; Main ERG; Itzhaki LS
    Biophys J; 2018 Jun; 114(11):2552-2562. PubMed ID: 29874606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetric study of a series of designed repeat proteins: modular structure and modular folding.
    Cortajarena AL; Regan L
    Protein Sci; 2011 Feb; 20(2):336-40. PubMed ID: 21280125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local and long-range stability in tandemly arrayed tetratricopeptide repeats.
    Main ER; Stott K; Jackson SE; Regan L
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5721-6. PubMed ID: 15824314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins.
    Javadi Y; Main ER
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17383-8. PubMed ID: 19805120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem-repeat proteins: regularity plus modularity equals design-ability.
    Javadi Y; Itzhaki LS
    Curr Opin Struct Biol; 2013 Aug; 23(4):622-31. PubMed ID: 23831287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoupling a tandem-repeat protein: Impact of multiple loop insertions on a modular scaffold.
    Perez-Riba A; Komives E; Main ERG; Itzhaki LS
    Sci Rep; 2019 Oct; 9(1):15439. PubMed ID: 31659184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting and reprogramming the folding and assembly of tandem-repeat proteins.
    Rowling PJ; Sivertsson EM; Perez-Riba A; Main ER; Itzhaki LS
    Biochem Soc Trans; 2015 Oct; 43(5):881-8. PubMed ID: 26517898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures.
    Ferreiro DU; Walczak AM; Komives EA; Wolynes PG
    PLoS Comput Biol; 2008 May; 4(5):e1000070. PubMed ID: 18483553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating repeat protein stability: the effect of individual helix stability on the collective behavior of the ensemble.
    Cortajarena AL; Mochrie SG; Regan L
    Protein Sci; 2011 Jun; 20(6):1042-7. PubMed ID: 21495096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix.
    Synakewicz M; Eapen RS; Perez-Riba A; Rowling PJE; Bauer D; Weißl A; Fischer G; Hyvönen M; Rief M; Itzhaki LS; Stigler J
    ACS Nano; 2022 Mar; 16(3):3895-3905. PubMed ID: 35258937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the length limit of loop grafting in a helical repeat protein.
    Ripka JF; Perez-Riba A; Chaturbedy PK; Itzhaki LS
    Curr Res Struct Biol; 2021; 3():30-40. PubMed ID: 34235484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of internal structured repeats increases the stability of a leucine-rich repeat protein, YopM.
    Vieux EF; Barrick D
    Biophys Chem; 2011 Nov; 159(1):152-61. PubMed ID: 21764506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of entropy, enthalpy, and hydrophobic desolvation to cooperativity in repeat-protein folding.
    Aksel T; Majumdar A; Barrick D
    Structure; 2011 Mar; 19(3):349-60. PubMed ID: 21397186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding cooperativity and allosteric function in the tandem-repeat protein class.
    Perez-Riba A; Synakewicz M; Itzhaki LS
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1749):. PubMed ID: 29735741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of α-helical tandem repeat proteins with closed architectures.
    Doyle L; Hallinan J; Bolduc J; Parmeggiani F; Baker D; Stoddard BL; Bradley P
    Nature; 2015 Dec; 528(7583):585-8. PubMed ID: 26675735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding thermodynamics and kinetics of the leucine-rich repeat domain of the virulence factor Internalin B.
    Courtemanche N; Barrick D
    Protein Sci; 2008 Jan; 17(1):43-53. PubMed ID: 18156467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All repeats are not equal: a module-based approach to guide repeat protein design.
    Sawyer N; Chen J; Regan L
    J Mol Biol; 2013 May; 425(10):1826-1838. PubMed ID: 23434848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical model for the mechanical unfolding of repeat proteins.
    Makarov DE
    Biophys J; 2009 Mar; 96(6):2160-7. PubMed ID: 19289042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeat proteins challenge the concept of structural domains.
    Espada R; Parra RG; Sippl MJ; Mora T; Walczak AM; Ferreiro DU
    Biochem Soc Trans; 2015 Oct; 43(5):844-9. PubMed ID: 26517892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats.
    Urvoas A; Guellouz A; Valerio-Lepiniec M; Graille M; Durand D; Desravines DC; van Tilbeurgh H; Desmadril M; Minard P
    J Mol Biol; 2010 Nov; 404(2):307-27. PubMed ID: 20887736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.