These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29874621)

  • 1. A Bond-Fluctuation Model of Translational Dynamics of Chain-like Particles through Mucosal Scaffolds.
    Bajd F; Serša I
    Biophys J; 2018 Jun; 114(11):2732-2742. PubMed ID: 29874621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Model for the Transient Subdiffusive Behavior of Particles in Mucus.
    Ernst M; John T; Guenther M; Wagner C; Schaefer UF; Lehr CM
    Biophys J; 2017 Jan; 112(1):172-179. PubMed ID: 28076809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting first traversal times for virions and nanoparticles in mucus with slowed diffusion.
    Erickson AM; Henry BI; Murray JM; Klasse PJ; Angstmann CN
    Biophys J; 2015 Jul; 109(1):164-72. PubMed ID: 26153713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis: Proof of concept, challenges and pitfalls.
    Nafee N; Forier K; Braeckmans K; Schneider M
    Eur J Pharm Biopharm; 2018 Mar; 124():125-137. PubMed ID: 29291931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mucus as a barrier to drug delivery – understanding and mimicking the barrier properties.
    Boegh M; Nielsen HM
    Basic Clin Pharmacol Toxicol; 2015 Mar; 116(3):179-86. PubMed ID: 25349046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient Effects of Excluded Volume Interactions on the Translational Diffusion of Hydrodynamically Anisotropic Molecules.
    Długosz M; Antosiewicz JM
    J Chem Theory Comput; 2014 Jun; 10(6):2583-90. PubMed ID: 26580778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mucus models to evaluate the diffusion of drugs and particles.
    Lock JY; Carlson TL; Carrier RL
    Adv Drug Deliv Rev; 2018 Jan; 124():34-49. PubMed ID: 29117512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disassembling the complexity of mucus barriers to develop a fast screening tool for early drug discovery.
    Pacheco DP; Butnarasu CS; Briatico Vangosa F; Pastorino L; Visai L; Visentin S; Petrini P
    J Mater Chem B; 2019 Aug; 7(32):4940-4952. PubMed ID: 31411620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.
    Abdulkarim M; Agulló N; Cattoz B; Griffiths P; Bernkop-Schnürch A; Borros SG; Gumbleton M
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):230-8. PubMed ID: 25661585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEGylation for enhancing nanoparticle diffusion in mucus.
    Huckaby JT; Lai SK
    Adv Drug Deliv Rev; 2018 Jan; 124():125-139. PubMed ID: 28882703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation.
    Boegh M; García-Díaz M; Müllertz A; Nielsen HM
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):136-43. PubMed ID: 25622791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mucus penetrating properties of soft, distensible lipid nanocapsules.
    Chen H; Mansfield EDH; Woods A; Khutoryanskiy VV; Forbes B; Jones SA
    Eur J Pharm Biopharm; 2019 Jun; 139():76-84. PubMed ID: 30818012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mucus permeating thiomer nanoparticles.
    Köllner S; Dünnhaupt S; Waldner C; Hauptstein S; Pereira de Sousa I; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):265-72. PubMed ID: 25603199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mucus-penetrating phage-displayed peptides for improved transport across a mucus-like model.
    Leal J; Dong T; Taylor A; Siegrist E; Gao F; Smyth HDC; Ghosh D
    Int J Pharm; 2018 Dec; 553(1-2):57-64. PubMed ID: 30268850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mucus on drug transport and its potential to affect therapeutic outcomes.
    Murgia X; Loretz B; Hartwig O; Hittinger M; Lehr CM
    Adv Drug Deliv Rev; 2018 Jan; 124():82-97. PubMed ID: 29106910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the bronchial barrier in pulmonary drug delivery: A human bronchial epithelial cell line supplemented with human tracheal mucus.
    Murgia X; Yasar H; Carvalho-Wodarz C; Loretz B; Gordon S; Schwarzkopf K; Schaefer U; Lehr CM
    Eur J Pharm Biopharm; 2017 Sep; 118():79-88. PubMed ID: 28373109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus.
    Henry CE; Wang YY; Yang Q; Hoang T; Chattopadhyay S; Hoen T; Ensign LM; Nunn KL; Schroeder H; McCallen J; Moench T; Cone R; Roffler SR; Lai SK
    Acta Biomater; 2016 Oct; 43():61-70. PubMed ID: 27424083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying diffusion in mucosal systems by pulsed-gradient spin-echo NMR.
    Occhipinti P; Griffiths PC
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1570-82. PubMed ID: 18940211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of microbicide nanoparticles with a simulated vaginal fluid.
    das Neves J; Rocha CM; Gonçalves MP; Carrier RL; Amiji M; Bahia MF; Sarmento B
    Mol Pharm; 2012 Nov; 9(11):3347-56. PubMed ID: 23003680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.