BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29874632)

  • 1. Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: Significance of microbial structures.
    Flayac C; Trably E; Bernet N
    Bioelectrochemistry; 2018 Oct; 123():219-226. PubMed ID: 29874632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electric picnic: synergistic requirements for exoelectrogenic microbial communities.
    Kiely PD; Regan JM; Logan BE
    Curr Opin Biotechnol; 2011 Jun; 22(3):378-85. PubMed ID: 21441020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.
    Hari AR; Katuri KP; Gorron E; Logan BE; Saikaly PE
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5999-6011. PubMed ID: 26936773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Response of microbial fuel cell anodic microbial communities to substrate switch of lactate-propionate-lactate].
    Gao C; Wu W; Zhao Y; Wang A; Ren N; Wang M; Zhao Y
    Wei Sheng Wu Xue Bao; 2015 Nov; 55(11):1495-504. PubMed ID: 26915231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells.
    Hari AR; Katuri KP; Logan BE; Saikaly PE
    Sci Rep; 2016 Dec; 6():38690. PubMed ID: 27934925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
    Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.
    Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.
    Commault AS; Lear G; Packer MA; Weld RJ
    Bioresour Technol; 2013 Jul; 139():226-34. PubMed ID: 23665518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors.
    Zhao Z; Zhang Y; Holmes DE; Dang Y; Woodard TL; Nevin KP; Lovley DR
    Bioresour Technol; 2016 Jun; 209():148-56. PubMed ID: 26967338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.
    Gao C; Wang A; Wu WM; Yin Y; Zhao YG
    Bioresour Technol; 2014 Sep; 167():124-32. PubMed ID: 24973773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of exoelectrogenic utilization preferences and hydrogen conversion among major fermentation products in microbial electrolysis cells.
    Choi Y; Kim D; Choi H; Cha J; Baek G; Lee C
    Bioresour Technol; 2024 Feb; 393():130032. PubMed ID: 38013038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the robustness of Geobacter sulfurreducens against fermentation hydrolysate for uses in bioelectrochemical systems.
    Härrer D; Elreedy A; Ali R; Hille-Reichel A; Gescher J
    Bioresour Technol; 2023 Feb; 369():128363. PubMed ID: 36423764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.
    Rago L; Baeza JA; Guisasola A
    Bioelectrochemistry; 2016 Jun; 109():57-62. PubMed ID: 26855359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Carbon Felt Electrode Pretreatment on Anodic Biofilm Composition in Microbial Electrolysis Cells.
    Spiess S; Kucera J; Seelajaroen H; Sasiain A; Thallner S; Kremser K; Novak D; Guebitz GM; Haberbauer M
    Biosensors (Basel); 2021 May; 11(6):. PubMed ID: 34073192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell.
    Ishii S; Logan BE; Sekiguchi Y
    Appl Microbiol Biotechnol; 2012 May; 94(4):1087-94. PubMed ID: 22223104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.
    Chae KJ; Choi MJ; Lee JW; Kim KY; Kim IS
    Bioresour Technol; 2009 Jul; 100(14):3518-25. PubMed ID: 19345574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms.
    Commault AS; Barrière F; Lapinsonnière L; Lear G; Bouvier S; Weld RJ
    Bioresour Technol; 2015 Nov; 195():265-72. PubMed ID: 26166461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and current production of mixed culture anodic biofilms remain unaffected by sub-microscale surface roughness.
    Pierra M; Golozar M; Zhang X; Prévoteau A; De Volder M; Reynaerts D; Rabaey K
    Bioelectrochemistry; 2018 Aug; 122():213-220. PubMed ID: 29694942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Removal of Ni (II) and microbial dynamics in single-chamber microbial electrolysis cell].
    Zhao X; Wu Y; Wang L; Li W; Jin M; Li S
    Wei Sheng Wu Xue Bao; 2016 Nov; 56(11):1794-1801. PubMed ID: 29741843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.