These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29874763)

  • 1. Mesoporous carbon for efficient removal of microcystin-LR in drinking water sources, Nak-Dong River, South Korea: Application to a field-scale drinking water treatment plant.
    Park JA; Jung SM; Choi JW; Kim JH; Hong S; Lee SH
    Chemosphere; 2018 Feb; 193():883-891. PubMed ID: 29874763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source.
    Park JA; Jung SM; Yi IG; Choi JW; Kim SB; Lee SH
    Chemosphere; 2017 Jun; 177():15-23. PubMed ID: 28279901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of microcystin-LR from spiked water using either activated carbon or anthracite as filter material.
    Drogui P; Daghrir R; Simard MC; Sauvageau C; Blais JF
    Environ Technol; 2012; 33(4-6):381-91. PubMed ID: 22629609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison and modeling of the adsorption of two microcystin analogues onto powdered activated carbon.
    Cook D; Newcombe G
    Environ Technol; 2008 May; 29(5):525-34. PubMed ID: 18661736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating Microcystin-LR adsorption mechanisms on mesoporous carbon, mesoporous silica, and their amino-functionalized form: Surface chemistry, pore structures, and molecular characteristics.
    Park JA; Kang JK; Jung SM; Choi JW; Lee SH; Yargeau V; Kim SB
    Chemosphere; 2020 May; 247():125811. PubMed ID: 31945720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mn-doped carbon xerogels as catalyst in the removal of microcystin-LR by water-surface discharge plasma.
    Xin Q; Zhang Y; Wu KB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(3):293-9. PubMed ID: 23245304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The transformation of microcystin-LR during tap water treatment process and analysis of its degradation products].
    Ding XL; Zhu PF; Huang CH; Zhang Q; Zhu JY; Liu WW; Zhou WJ
    Zhonghua Yu Fang Yi Xue Za Zhi; 2018 Sep; 52(9):898-903. PubMed ID: 30196635
    [No Abstract]   [Full Text] [Related]  

  • 8. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies.
    Ho L; Lambling P; Bustamante H; Duker P; Newcombe G
    Water Res; 2011 Apr; 45(9):2954-64. PubMed ID: 21459402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorptive removal of microcystin-LR from surface and wastewater using tyre-based powdered activated carbon: Kinetics and isotherms.
    Mashile PP; Mpupa A; Nomngongo PN
    Toxicon; 2018 Apr; 145():25-31. PubMed ID: 29501826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical and biological removal of Microcystin-LR and other water contaminants in a biofilter using Manganese Dioxide coated sand and Graphene sand composites.
    Kumar P; Rehab H; Hegde K; Brar SK; Cledon M; Kermanshahi-Pour A; Vo Duy S; Sauvé S; Surampalli RY
    Sci Total Environ; 2020 Feb; 703():135052. PubMed ID: 31733495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments.
    Pavagadhi S; Tang AL; Sathishkumar M; Loh KP; Balasubramanian R
    Water Res; 2013 Sep; 47(13):4621-9. PubMed ID: 23764611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of cyanotoxins from surface water resources using reusable molecularly imprinted polymer adsorbents.
    Krupadam RJ; Patel GP; Balasubramanian R
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1841-51. PubMed ID: 22207238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of chlorine on PAC's ability to adsorb microcystin].
    Liu C; Gao NY; Dong BZ; Liu SQ; Zhao JF
    Huan Jing Ke Xue; 2007 May; 28(5):997-1000. PubMed ID: 17633168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant.
    Shang L; Feng M; Xu X; Liu F; Ke F; Li W
    Toxins (Basel); 2018 Jan; 10(1):. PubMed ID: 29301296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-cost graphitized sand filter to deliver MC-LR-free potable water: Water treatment plants and household perspective.
    Kumar P; Cledon M; Brar SK
    Sci Total Environ; 2020 Dec; 747():141135. PubMed ID: 32795791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and photodegradation of microcystin-LR onto sediments collected from reservoirs and rivers in Taiwan: a laboratory study to investigate the fate, transfer, and degradation of microcystin-LR.
    Munusamy T; Hu YL; Lee JF
    Environ Sci Pollut Res Int; 2012 Jul; 19(6):2390-9. PubMed ID: 22274794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation.
    Choi H; Antoniou MG; Pelaez M; De la Cruz AA; Shoemaker JA; Dionysiou DD
    Environ Sci Technol; 2007 Nov; 41(21):7530-5. PubMed ID: 18044537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ electrochemical Fe(VI) for removal of microcystin-LR from drinking water: comparing dosing of the ferrate ion by electrochemical and chemical means.
    Dubrawski KL; Cataldo M; Dubrawski Z; Mazumder A; Wilkinson DP; Mohseni M
    J Water Health; 2018 Jun; 16(3):414-424. PubMed ID: 29952330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of microcystin-LR and olefinic compounds by ferrate(VI): Oxidative cleavage of olefinic double bonds as the primary reaction pathway.
    Islam A; Jeon D; Ra J; Shin J; Kim TY; Lee Y
    Water Res; 2018 Sep; 141():268-278. PubMed ID: 29800835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling physiochemical adsorption with biodegradation for enhanced removal of microcystin-LR in water.
    Tang S; Zhang L; Zhu H; Jiang SC
    Sci Total Environ; 2024 Aug; 937():173370. PubMed ID: 38772489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.