These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29874967)

  • 1. Additive-manufactured microporous polymer membranes for biomedical in vitro applications.
    Düregger K; Trik S; Leonhardt S; Eblenkamp M
    J Biomater Appl; 2018 Jul; 33(1):116-126. PubMed ID: 29874967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.
    Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K
    Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous polymeric membranes: fabrication techniques and biomedical applications.
    Shiohara A; Prieto-Simon B; Voelcker NH
    J Mater Chem B; 2021 Mar; 9(9):2129-2154. PubMed ID: 33283821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of photocurable poly(glycerol sebacate) elastomers.
    Yeh YC; Highley CB; Ouyang L; Burdick JA
    Biofabrication; 2016 Oct; 8(4):045004. PubMed ID: 27716633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffold fabrication by indirect three-dimensional printing.
    Lee M; Dunn JC; Wu BM
    Biomaterials; 2005 Jul; 26(20):4281-9. PubMed ID: 15683652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsion Inks for 3D Printing of High Porosity Materials.
    Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM
    Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review.
    Basgul C; Spece H; Sharma N; Thieringer FM; Kurtz SM
    J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1924-1941. PubMed ID: 33856114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-Based 3D Printing of Polymers of Intrinsic Microporosity.
    Zhang F; Ma Y; Liao J; Breedveld V; Lively RP
    Macromol Rapid Commun; 2018 Jul; 39(13):e1800274. PubMed ID: 29806243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.
    Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ
    Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.
    Mondschein RJ; Kanitkar A; Williams CB; Verbridge SS; Long TE
    Biomaterials; 2017 Sep; 140():170-188. PubMed ID: 28651145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review.
    Balakrishnan HK; Doeven EH; Merenda A; Dumée LF; Guijt RM
    Anal Chim Acta; 2021 Nov; 1185():338796. PubMed ID: 34711329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system.
    Lee SH; Cho YS; Hong MW; Lee BK; Park Y; Park SH; Kim YY; Cho YS
    Biomed Mater; 2017 Sep; 12(5):055003. PubMed ID: 28762959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.
    Hart LR; Li S; Sturgess C; Wildman R; Jones JR; Hayes W
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3115-22. PubMed ID: 26766139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.
    Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG
    Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatible 3D printed polymers via fused deposition modelling direct C
    Rimington RP; Capel AJ; Christie SDR; Lewis MP
    Lab Chip; 2017 Aug; 17(17):2982-2993. PubMed ID: 28762415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of 3D-printed Ti
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    J Mech Behav Biomed Mater; 2018 Dec; 88():488-496. PubMed ID: 30223212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.