These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 29875264)
1. Loss of CaMKI Function Disrupts Salt Aversive Learning in Lim JP; Fehlauer H; Das A; Saro G; Glauser DA; Brunet A; Goodman MB J Neurosci; 2018 Jul; 38(27):6114-6129. PubMed ID: 29875264 [TBL] [Abstract][Full Text] [Related]
2. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. Oda S; Tomioka M; Iino Y J Neurophysiol; 2011 Jul; 106(1):301-8. PubMed ID: 21525368 [TBL] [Abstract][Full Text] [Related]
3. Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans. Adachi T; Kunitomo H; Tomioka M; Ohno H; Okochi Y; Mori I; Iino Y Genetics; 2010 Dec; 186(4):1309-19. PubMed ID: 20837997 [TBL] [Abstract][Full Text] [Related]
4. Multiple sensory neurons mediate starvation-dependent aversive navigation in Jang MS; Toyoshima Y; Tomioka M; Kunitomo H; Iino Y Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18673-18683. PubMed ID: 31455735 [TBL] [Abstract][Full Text] [Related]
5. A Gustatory Neural Circuit of Wang L; Sato H; Satoh Y; Tomioka M; Kunitomo H; Iino Y J Neurosci; 2017 Feb; 37(8):2097-2111. PubMed ID: 28126744 [TBL] [Abstract][Full Text] [Related]
6. Multiple p38/JNK mitogen-activated protein kinase (MAPK) signaling pathways mediate salt chemotaxis learning in C. elegans. Huang T; Suzuki K; Kunitomo H; Tomioka M; Iino Y G3 (Bethesda); 2023 Aug; 13(9):. PubMed ID: 37310929 [TBL] [Abstract][Full Text] [Related]
8. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Tomioka M; Adachi T; Suzuki H; Kunitomo H; Schafer WR; Iino Y Neuron; 2006 Sep; 51(5):613-25. PubMed ID: 16950159 [TBL] [Abstract][Full Text] [Related]
9. Ca Ippolito D; Thapliyal S; Glauser DA Elife; 2021 Nov; 10():. PubMed ID: 34766550 [TBL] [Abstract][Full Text] [Related]
10. The C. elegans ceh-36 gene encodes a putative homemodomain transcription factor involved in chemosensory functions of ASE and AWC neurons. Koga M; Ohshima Y J Mol Biol; 2004 Feb; 336(3):579-87. PubMed ID: 15095973 [TBL] [Abstract][Full Text] [Related]
11. Neuromedin U signaling regulates retrieval of learned salt avoidance in a C. elegans gustatory circuit. Watteyne J; Peymen K; Van der Auwera P; Borghgraef C; Vandewyer E; Van Damme S; Rutten I; Lammertyn J; Jelier R; Schoofs L; Beets I Nat Commun; 2020 Apr; 11(1):2076. PubMed ID: 32350283 [TBL] [Abstract][Full Text] [Related]
12. Multiple antagonist calcium-dependent mechanisms control CaM kinase-1 subcellular localization in a Ippolito D; Glauser DA Elife; 2023 May; 12():. PubMed ID: 37166173 [TBL] [Abstract][Full Text] [Related]
13. Roles of the ClC chloride channel CLH-1 in food-associated salt chemotaxis behavior of Park C; Sakurai Y; Sato H; Kanda S; Iino Y; Kunitomo H Elife; 2021 Jan; 10():. PubMed ID: 33492228 [TBL] [Abstract][Full Text] [Related]
14. Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. Iino Y; Yoshida K J Neurosci; 2009 Apr; 29(17):5370-80. PubMed ID: 19403805 [TBL] [Abstract][Full Text] [Related]
15. Step-response analysis of chemotaxis in Caenorhabditis elegans. Miller AC; Thiele TR; Faumont S; Moravec ML; Lockery SR J Neurosci; 2005 Mar; 25(13):3369-78. PubMed ID: 15800192 [TBL] [Abstract][Full Text] [Related]
16. Defining specificity determinants of cGMP mediated gustatory sensory transduction in Caenorhabditis elegans. Smith HK; Luo L; O'Halloran D; Guo D; Huang XY; Samuel AD; Hobert O Genetics; 2013 Aug; 194(4):885-901. PubMed ID: 23695300 [TBL] [Abstract][Full Text] [Related]
17. Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans. Chen Z; Hendricks M; Cornils A; Maier W; Alcedo J; Zhang Y Neuron; 2013 Feb; 77(3):572-85. PubMed ID: 23395381 [TBL] [Abstract][Full Text] [Related]
18. The intestinal TORC2 signaling pathway contributes to associative learning in Caenorhabditis elegans. Sakai N; Ohno H; Tomioka M; Iino Y PLoS One; 2017; 12(5):e0177900. PubMed ID: 28542414 [TBL] [Abstract][Full Text] [Related]
19. The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans. van der Linden AM; Wiener S; You YJ; Kim K; Avery L; Sengupta P Genetics; 2008 Nov; 180(3):1475-91. PubMed ID: 18832350 [TBL] [Abstract][Full Text] [Related]
20. The CMK-1 CaMKI and the TAX-4 Cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans. Satterlee JS; Ryu WS; Sengupta P Curr Biol; 2004 Jan; 14(1):62-8. PubMed ID: 14711416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]