BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29875328)

  • 1. Composition of Metallic Elements and Size Distribution of Fine and Ultrafine Particles in a Steelmaking Factory.
    Marcias G; Fostinelli J; Catalani S; Uras M; Sanna AM; Avataneo G; De Palma G; Fabbri D; Paganelli M; Lecca LI; Buonanno G; Campagna M
    Int J Environ Res Public Health; 2018 Jun; 15(6):. PubMed ID: 29875328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI).
    Kero I; Naess MK; Tranell G
    J Occup Environ Hyg; 2015; 12(1):37-44. PubMed ID: 25380385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of particle exposure in ferrochromium and stainless steel production.
    Järvelä M; Huvinen M; Viitanen AK; Kanerva T; Vanhala E; Uitti J; Koivisto AJ; Junttila S; Luukkonen R; Tuomi T
    J Occup Environ Hyg; 2016 Jul; 13(7):558-68. PubMed ID: 26950803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafine particles emitted by flame and electric arc guns for thermal spraying of metals.
    Bémer D; Régnier R; Subra I; Sutter B; Lecler MT; Morele Y
    Ann Occup Hyg; 2010 Aug; 54(6):607-14. PubMed ID: 20685717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafine Particle Distribution and Chemical Composition Assessment during Military Operative Trainings.
    Campagna M; Pilia I; Marcias G; Frattolillo A; Pili S; Bernabei M; d'Aloja E; Cocco P; Buonanno G
    Int J Environ Res Public Health; 2017 May; 14(6):. PubMed ID: 28556812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and chemical characterization of airborne particles from welding operations in automotive plants.
    Dasch J; D'Arcy J
    J Occup Environ Hyg; 2008 Jul; 5(7):444-54. PubMed ID: 18464098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of inhalable, thoracic, and respirable fractions and ultrafine particle exposure during grinding, brazing, and welding activities in a mechanical engineering factory.
    Iavicoli I; Leso V; Fontana L; Cottica D; Bergamaschi A
    J Occup Environ Med; 2013 Apr; 55(4):430-45. PubMed ID: 23348430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.
    Shepard MN; Brenner S
    Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-element analysis of airborne particulate matter from different work tasks during subsea tunnel rehabilitation work.
    Weggeberg H; Føreland S; Buhagen M; Hilt B; Flaten TP
    J Occup Environ Hyg; 2016 Oct; 13(10):725-40. PubMed ID: 27078031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air sampling methodology for asphalt fume in asphalt production and asphalt roofing manufacturing facilities: total particulate sampler versus inhalable particulate sampler.
    Calzavara TS; Carter CM; Axten C
    Appl Occup Environ Hyg; 2003 May; 18(5):358-67. PubMed ID: 12746079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.
    Pfefferkorn FE; Bello D; Haddad G; Park JY; Powell M; McCarthy J; Bunker KL; Fehrenbacher A; Jeon Y; Virji MA; Gruetzmacher G; Hoover MD
    Ann Occup Hyg; 2010 Jul; 54(5):486-503. PubMed ID: 20453001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.
    Dahlman-Höglund A; Lindgren Å; Mattsby-Baltzer I
    Ann Occup Hyg; 2016 Aug; 60(7):836-44. PubMed ID: 27268595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle size and metal composition of gouging and lancing fumes.
    Keyter M; Van Der Merwe A; Franken A
    J Occup Environ Hyg; 2019 Sep; 16(9):643-655. PubMed ID: 31361583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Workplace Measurements of Ultrafine Particles-A Literature Review.
    Viitanen AK; Uuksulainen S; Koivisto AJ; Hämeri K; Kauppinen T
    Ann Work Expo Health; 2017 Aug; 61(7):749-758. PubMed ID: 28810681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.
    Kero IT; Jørgensen RB
    Int J Environ Res Public Health; 2016 Sep; 13(9):. PubMed ID: 27598180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.
    Stabile L; Cauda E; Marini S; Buonanno G
    Ann Occup Hyg; 2014 Aug; 58(7):860-76. PubMed ID: 24817159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafine particle characteristics in seven industrial plants.
    Elihn K; Berg P
    Ann Occup Hyg; 2009 Jul; 53(5):475-84. PubMed ID: 19447849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.
    Evans DE; Ku BK; Birch ME; Dunn KH
    Ann Occup Hyg; 2010 Jul; 54(5):514-31. PubMed ID: 20447936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.