These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 29875341)
1. Comparative Analyses of Anatomical Structure, Phytohormone Levels, and Gene Expression Profiles Reveal Potential Dwarfing Mechanisms in Shengyin Bamboo ( Wang T; Liu L; Wang X; Liang L; Yue J; Li L Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29875341 [TBL] [Abstract][Full Text] [Related]
2. Morphological and Anatomical Analysis of the Internodes of a New Dwarf Variant of Moso Bamboo, Zha R; Chen T; Liu Q; Wei Q; Que F Plants (Basel); 2023 Apr; 12(9):. PubMed ID: 37176817 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis of lateral buds from Phyllostachys edulis rhizome during germination and early shoot stages. Shou Y; Zhu Y; Ding Y BMC Plant Biol; 2020 May; 20(1):229. PubMed ID: 32448144 [TBL] [Abstract][Full Text] [Related]
4. Histological, metabolomic and transcriptomic analyses reveal mechanisms of cold acclimation of the Moso bamboo (Phyllostachys edulis) leaf. Wang H; Guo L; Zha R; Gao Z; Yu F; Wei Q Tree Physiol; 2022 Nov; 42(11):2336-2352. PubMed ID: 35723499 [TBL] [Abstract][Full Text] [Related]
5. Phytohormone Crosstalk of Cytokinin Biosynthesis and Signaling Family Genes in Moso Bamboo ( Bai Y; Cai M; Dou Y; Xie Y; Zheng H; Gao J Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446040 [TBL] [Abstract][Full Text] [Related]
6. Systematic identification and expression pattern analysis of the Aux/IAA and ARF gene families in moso bamboo (Phyllostachys edulis). Li F; Wu M; Liu H; Gao Y; Xiang Y Plant Physiol Biochem; 2018 Sep; 130():431-444. PubMed ID: 30077919 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis. Gao J; Zhang Y; Zhang C; Qi F; Li X; Mu S; Peng Z PLoS One; 2014; 9(6):e98910. PubMed ID: 24915141 [TBL] [Abstract][Full Text] [Related]
8. PSBR1, encoding a mitochondrial protein, is regulated by brassinosteroid in moso bamboo (Phyllostachys edulis). Guo Z; Zhang Z; Yang X; Yin K; Chen Y; Zhang Z; Shin K; Zhu Q; Wang ZY; Wang W Plant Mol Biol; 2020 May; 103(1-2):63-74. PubMed ID: 32040757 [TBL] [Abstract][Full Text] [Related]
9. Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots. Wei Q; Jiao C; Guo L; Ding Y; Cao J; Feng J; Dong X; Mao L; Sun H; Yu F; Yang G; Shi P; Ren G; Fei Z New Phytol; 2017 Apr; 214(1):81-96. PubMed ID: 27859288 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide characterization and gene expression analyses of ALDH gene family in response to drought stress in moso bamboo (Phyllostachys edulis). Xu J; Liu L; Huang H; Shang C; Pan H; Fan H; Han X; Qiu W; Lu Z; Qiao G; Zhuo R Plant Physiol Biochem; 2023 Sep; 202():107954. PubMed ID: 37573795 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Liu Y; Wu C; Hu X; Gao H; Wang Y; Luo H; Cai S; Li G; Zheng Y; Lin C; Zhu Q Tree Physiol; 2020 Apr; 40(4):538-556. PubMed ID: 31860727 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications. Zhang H; Wang H; Zhu Q; Gao Y; Wang H; Zhao L; Wang Y; Xi F; Wang W; Yang Y; Lin C; Gu L BMC Plant Biol; 2018 Jun; 18(1):125. PubMed ID: 29925317 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification and expression characterization of the DoG gene family of moso bamboo (Phyllostachys edulis). Zhijun Z; Peiyao Y; Bing H; Ruifang M; Vinod KK; Ramakrishnan M BMC Genomics; 2022 May; 23(1):357. PubMed ID: 35538420 [TBL] [Abstract][Full Text] [Related]
15. Physiological and transcriptomic analyses of brassinosteroid function in moso bamboo (Phyllostachys edulis) seedlings. Zhang Z; Yang X; Cheng L; Guo Z; Wang H; Wu W; Shin K; Zhu J; Zheng X; Bian J; Li Y; Gu L; Zhu Q; Wang ZY; Wang W Planta; 2020 Jul; 252(2):27. PubMed ID: 32712728 [TBL] [Abstract][Full Text] [Related]
16. Genome-Wide Identification, Expansion, and Evolution Analysis of Homeobox Gene Family Reveals TALE Genes Important for Secondary Cell Wall Biosynthesis in Moso Bamboo ( Que F; Liu Q; Zha R; Xiong A; Wei Q Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35456930 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). Peng Z; Zhang C; Zhang Y; Hu T; Mu S; Li X; Gao J PLoS One; 2013; 8(11):e78944. PubMed ID: 24244391 [TBL] [Abstract][Full Text] [Related]
18. Hormone Distribution and Transcriptome Profiles in Bamboo Shoots Provide Insights on Bamboo Stem Emergence and Growth. Gamuyao R; Nagai K; Ayano M; Mori Y; Minami A; Kojima M; Suzuki T; Sakakibara H; Higashiyama T; Ashikari M; Reuscher S Plant Cell Physiol; 2017 Apr; 58(4):702-716. PubMed ID: 28204696 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis reveals key genes regulating signaling and metabolic pathways during the growth of moso bamboo (Phyllostachys edulis) shoots. Lan Y; Wu L; Wu M; Liu H; Gao Y; Zhang K; Xiang Y Physiol Plant; 2021 May; 172(1):91-105. PubMed ID: 33280114 [TBL] [Abstract][Full Text] [Related]
20. MicroRNAs play important roles in regulating the rapid growth of the Phyllostachys edulis culm internode. Wang KL; Zhang Y; Zhang HM; Lin XC; Xia R; Song L; Wu AM New Phytol; 2021 Sep; 231(6):2215-2230. PubMed ID: 34101835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]