BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 29875396)

  • 1. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity.
    Jiang W; Feng S; Huang S; Yu W; Li G; Yang G; Liu Y; Zhang Y; Zhang L; Hou Y; Chen J; Chen J; Huang X
    Cell Res; 2018 Aug; 28(8):855-861. PubMed ID: 29875396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System.
    Bae SJ; Park BG; Kim BG; Hahn JS
    Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system.
    Qin L; Li J; Wang Q; Xu Z; Sun L; Alariqi M; Manghwar H; Wang G; Li B; Ding X; Rui H; Huang H; Lu T; Lindsey K; Daniell H; Zhang X; Jin S
    Plant Biotechnol J; 2020 Jan; 18(1):45-56. PubMed ID: 31116473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9
    Li Q; Seys FM; Minton NP; Yang J; Jiang Y; Jiang W; Yang S
    Biotechnol Bioeng; 2019 Jun; 116(6):1475-1483. PubMed ID: 30739328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base editing with a Cpf1-cytidine deaminase fusion.
    Li X; Wang Y; Liu Y; Yang B; Wang X; Wei J; Lu Z; Zhang Y; Wu J; Huang X; Yang L; Chen J
    Nat Biotechnol; 2018 Apr; 36(4):324-327. PubMed ID: 29553573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Genome and Base Editing in Human Cells Using ThermoCas9.
    Trasanidou D; Barendse P; Bouzetos E; de Haan L; Bouwmeester H; Staals RHJ; Mougiakos I; van der Oost J
    CRISPR J; 2023 Jun; 6(3):278-288. PubMed ID: 37134217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins.
    Chen L; Park JE; Paa P; Rajakumar PD; Prekop HT; Chew YT; Manivannan SN; Chew WL
    Nat Commun; 2021 Mar; 12(1):1384. PubMed ID: 33654077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope.
    Hu Z; Wang S; Zhang C; Gao N; Li M; Wang D; Wang D; Liu D; Liu H; Ong SG; Wang H; Wang Y
    PLoS Biol; 2020 Mar; 18(3):e3000686. PubMed ID: 32226015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities.
    Gehrke JM; Cervantes O; Clement MK; Wu Y; Zeng J; Bauer DE; Pinello L; Joung JK
    Nat Biotechnol; 2018 Nov; 36(10):977-982. PubMed ID: 30059493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion.
    Wang X; Li J; Wang Y; Yang B; Wei J; Wu J; Wang R; Huang X; Chen J; Yang L
    Nat Biotechnol; 2018 Nov; 36(10):946-949. PubMed ID: 30125268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions.
    Kim YB; Komor AC; Levy JM; Packer MS; Zhao KT; Liu DR
    Nat Biotechnol; 2017 Apr; 35(4):371-376. PubMed ID: 28191901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications.
    Molla KA; Yang Y
    Trends Biotechnol; 2019 Oct; 37(10):1121-1142. PubMed ID: 30995964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the genome-targeting scope and the site selectivity of high-precision base editors.
    Tan J; Zhang F; Karcher D; Bock R
    Nat Commun; 2020 Jan; 11(1):629. PubMed ID: 32005820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding C-T base editing toolkit with diversified cytidine deaminases.
    Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z
    Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-Guided Recombinase-Cas9 Fusion Targets Genomic DNA Deletion and Integration.
    Standage-Beier K; Brookhouser N; Balachandran P; Zhang Q; Brafman DA; Wang X
    CRISPR J; 2019 Aug; 2(4):209-222. PubMed ID: 31436506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase.
    Tong H; Wang H; Wang X; Liu N; Li G; Wu D; Li Y; Jin M; Li H; Wei Y; Li T; Yuan Y; Shi L; Yao X; Zhou Y; Yang H
    Nat Commun; 2024 Jun; 15(1):4897. PubMed ID: 38851742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.