BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29876073)

  • 1. Long-term nutrient addition increases respiration and nitrous oxide emissions in a New England salt marsh.
    Martin RM; Wigand C; Elmstrom E; Lloret J; Valiela I
    Ecol Evol; 2018 May; 8(10):4958-4966. PubMed ID: 29876073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment.
    Chmura GL; Kellman L; van Ardenne L; Guntenspergen GR
    PLoS One; 2016; 11(2):e0149937. PubMed ID: 26914333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in Great Sippewissett Marsh.
    Valiela I; Chenoweth K; Lloret J; Teal J; Howes B; Goehringer Toner D
    Sci Total Environ; 2023 Apr; 867():161546. PubMed ID: 36634783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Term Fertilization Alters Nitrous Oxide Cycling Dynamics in Salt Marsh Sediments.
    Peng X; Ji Q; Angell JH; Kearns PJ; Bowen JL; Ward BB
    Environ Sci Technol; 2021 Aug; 55(15):10832-10842. PubMed ID: 34291904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent effects of hydrological alteration and nutrient addition on greenhouse gas emissions in the water level fluctuation zone of the Three Gorges Reservoir, China.
    Shi W; Du M; Ye C; Zhang Q
    Water Res; 2021 Aug; 201():117308. PubMed ID: 34102598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greenhouse gas flux with reflooding of a drained salt marsh soil.
    Wollenberg JT; Biswas A; Chmura GL
    PeerJ; 2018; 6():e5659. PubMed ID: 30479881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.
    Yang WH; Silver WL
    Glob Chang Biol; 2016 Jun; 22(6):2228-37. PubMed ID: 26718748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.
    Angell JH; Peng X; Ji Q; Craick I; Jayakumar A; Kearns PJ; Ward BB; Bowen JL
    Front Microbiol; 2018; 9():170. PubMed ID: 29483902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Ecosystem Eutrophication Causes Offsetting Effects on Emissions of CO
    Chan CN; Gushulak CAC; Leavitt PR; Logozzo LA; Finlay K; Bogard MJ
    Environ Sci Technol; 2024 Apr; 58(16):7045-7055. PubMed ID: 38587903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental influence of storm-surge salinity on soil greenhouse gas emissions from a tidal salt marsh.
    Capooci M; Barba J; Seyfferth AL; Vargas R
    Sci Total Environ; 2019 Oct; 686():1164-1172. PubMed ID: 31412512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and Temporal Variability and Driving Factors of Carbon Dioxide and Nitrous Oxide Fluxes in Alpine Wetland Ecosystems.
    Yu B; Xu W; Yan L; Bao H; Yu H
    Plants (Basel); 2022 Oct; 11(21):. PubMed ID: 36365276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting decadal-scale changes in elevation and vegetation in two Long Island Sound salt marshes.
    Carey JC; Raposa KB; Wigand C; Warren RS
    Estuaries Coast; 2017 May; 40(3):651-661. PubMed ID: 30008626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of 13-years of nitrogen addition on nitrous oxide and methane fluxes and ecosystem respiration in a temperate grassland.
    Chen S; Hao T; Goulding K; Misselbrook T; Liu X
    Environ Pollut; 2019 Sep; 252(Pt A):675-681. PubMed ID: 31185356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diurnal variation of CO
    Yang WB; Yuan CS; Tong C; Yang P; Yang L; Huang BQ
    Mar Pollut Bull; 2017 Jun; 119(1):289-298. PubMed ID: 28434669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors.
    Abbott KM; Quirk T; Fultz LM
    Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of elevated CO
    Reef R; Spencer T; Mӧller I; Lovelock CE; Christie EK; McIvor AL; Evans BR; Tempest JA
    Glob Chang Biol; 2017 Feb; 23(2):881-890. PubMed ID: 27310520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh.
    Krask JL; Buck TL; Dunn RP; Smith EM
    PLoS One; 2022; 17(11):e0278215. PubMed ID: 36441803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of climate and land use on N
    Gütlein A; Gerschlauer F; Kikoti I; Kiese R
    Glob Chang Biol; 2018 Mar; 24(3):1239-1255. PubMed ID: 29044840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High nutrient loads amplify carbon cycling across California and New York coastal wetlands but with ambiguous effects on marsh integrity and sustainability.
    Watson EB; Rahman FI; Woolfolk A; Meyer R; Maher N; Wigand C; Gray AB
    PLoS One; 2022; 17(9):e0273260. PubMed ID: 36084085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.