These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29876078)

  • 21. Acoustic approach as an alternative to human-based survey in bird biodiversity monitoring in agricultural meadows.
    Budka M; Jobda M; Szałański P; Piórkowski H
    PLoS One; 2022; 17(4):e0266557. PubMed ID: 35395028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An annotated set of audio recordings of Eastern North American birds containing frequency, time, and species information.
    Chronister LM; Rhinehart TA; Place A; Kitzes J
    Ecology; 2021 Jun; 102(6):e03329. PubMed ID: 33705568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are minidisc recorders adequate for the study of respiratory sounds?
    Kraman SS; Wodicka GR; Kiyokawa H; Pasterkamp H
    Biomed Instrum Technol; 2002; 36(3):177-82. PubMed ID: 12053867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of the sampling effectiveness of acoustic recorder, camera trap and point count methods in sampling nocturnal birds in Afrotropical landscapes.
    Joel YH; Iniunam IA; Dami DF; Ottosson U; Chaskda AA
    Ecol Evol; 2024 May; 14(5):e11389. PubMed ID: 38774133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NIPS4Bplus: a richly annotated birdsong audio dataset.
    Morfi V; Bas Y; Pamuła H; Glotin H; Stowell D
    PeerJ Comput Sci; 2019; 5():e223. PubMed ID: 33816876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sound-mapping a coniferous forest-Perspectives for biodiversity monitoring and noise mitigation.
    Turner A; Fischer M; Tzanopoulos J
    PLoS One; 2018; 13(1):e0189843. PubMed ID: 29320514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Birdsongs alleviate anxiety and paranoia in healthy participants.
    Stobbe E; Sundermann J; Ascone L; Kühn S
    Sci Rep; 2022 Oct; 12(1):16414. PubMed ID: 36229489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of automated bioacoustic recorders to replace human wildlife surveys: an example using nightjars.
    Zwart MC; Baker A; McGowan PJ; Whittingham MJ
    PLoS One; 2014; 9(7):e102770. PubMed ID: 25029035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere.
    Nowicki S
    Nature; 1987 Jan 1-7; 325(6099):53-5. PubMed ID: 3796738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Allometric escape and acoustic signal features facilitate high-frequency communication in an endemic Chinese primate.
    Riondato I; Gamba M; Tan CL; Niu K; Narins PM; Yang Y; Giacoma C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 May; 207(3):327-336. PubMed ID: 33555413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dominant frequency of songs in tropical bird species is higher in sites with high noise pollution.
    Tolentino VCM; Baesse CQ; Melo C
    Environ Pollut; 2018 Apr; 235():983-992. PubMed ID: 29751402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating animal population density using passive acoustics.
    Marques TA; Thomas L; Martin SW; Mellinger DK; Ward JA; Moretti DJ; Harris D; Tyack PL
    Biol Rev Camb Philos Soc; 2013 May; 88(2):287-309. PubMed ID: 23190144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning to pause: Fidelity of and biases in the developmental acquisition of gaps in the communicative signals of a songbird.
    James LS; Wang AS; Bertolo M; Sakata JT
    Dev Sci; 2023 Sep; 26(5):e13382. PubMed ID: 36861437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recognition of bird species with birdsong records using machine learning methods.
    Tang Y; Liu C; Yuan X
    PLoS One; 2024; 19(2):e0297988. PubMed ID: 38394300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Quantitative Evaluation of the Performance of the Low-Cost AudioMoth Acoustic Recording Unit.
    Lapp S; Stahlman N; Kitzes J
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autonomous sound recording outperforms human observation for sampling birds: a systematic map and user guide.
    Darras K; Batáry P; Furnas BJ; Grass I; Mulyani YA; Tscharntke T
    Ecol Appl; 2019 Sep; 29(6):e01954. PubMed ID: 31206926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biases in Ecoacoustics Analysis: A Protocol to Equalize Audio Recorders.
    Potenza A; Zaffaroni-Caorsi V; Benocci R; Guagliumi G; Fouani JM; Bisceglie A; Zambon G
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Species and habitat specific changes in bird activity in an urban environment during Covid 19 lockdown.
    Sun C; Hassin Y; Boonman A; Shwartz A; Yovel Y
    Elife; 2024 Feb; 12():. PubMed ID: 38335247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated detection of frog calls and choruses by pulse repetition rate.
    Lapp S; Wu T; Richards-Zawacki C; Voyles J; Rodriguez KM; Shamon H; Kitzes J
    Conserv Biol; 2021 Oct; 35(5):1659-1668. PubMed ID: 33586273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls.
    Pichardo S; Sin VW; Hynynen K
    Phys Med Biol; 2011 Jan; 56(1):219-50. PubMed ID: 21149950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.