BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29876213)

  • 1. Solvothermal-Derived S-Doped Graphene as an Anode Material for Sodium-Ion Batteries.
    Quan B; Jin A; Yu SH; Kang SM; Jeong J; Abruña HD; Jin L; Piao Y; Sung YE
    Adv Sci (Weinh); 2018 May; 5(5):1700880. PubMed ID: 29876213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Doped Modified Graphene/Fe
    Chen Y; Guo Z; Jian B; Zheng C; Zhang H
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31842343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries.
    Xu K; Pan Q; Zheng F; Zhong G; Wang C; Wu S; Yang C
    Front Chem; 2019; 7():733. PubMed ID: 31737606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Low-Cost and High-Performance Dual-Atom Doped Carbon-Based Materials with a Simple Green Route as Anodes for Sodium-Ion Batteries.
    Lu B; Zhang C; Deng DR; Weng JC; Song JX; Fan XH; Li GF; Li Y; Wu QH
    Molecules; 2023 Oct; 28(21):. PubMed ID: 37959733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries.
    Liu S; Xu H; Bian X; Feng J; Liu J; Yang Y; Yuan C; An Y; Fan R; Ci L
    ACS Nano; 2018 Jul; 12(7):7380-7387. PubMed ID: 29927234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-heteroatom-doped dual carbon-confined Fe
    Tao X; Li Y; Wang HG; Lv X; Li Y; Xu D; Jiang Y; Meng Y
    J Colloid Interface Sci; 2020 Apr; 565():494-502. PubMed ID: 31982716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Enhancement of Sodium Storage Induced through Both S-Compositing and Co-Doping Strategies.
    Yue L; Li K; Sun G; Zhang W; Yang X; Cheng F; Zhang F; Xu N; Zhang J
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54043-54058. PubMed ID: 34734687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries.
    Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F
    J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe
    He Q; Rui K; Yang J; Wen Z
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29476-29485. PubMed ID: 30091893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sb
    Jaramillo-Quintero OA; Barrera-Peralta RV; Baron-Jaimes A; Miranda-Gamboa RA; Rincon ME
    RSC Adv; 2021 Sep; 11(50):31566-31571. PubMed ID: 35496847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Confined SnS
    Li D; Sun Q; Zhang Y; Chen L; Wang Z; Liang Z; Si P; Ci L
    ChemSusChem; 2019 Jun; 12(12):2689-2700. PubMed ID: 30997950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastable Li-ion battery anodes by encapsulating SnS nanoparticles in sulfur-doped graphene bubble films.
    Zhao B; Song D; Ding Y; Wu J; Wang Z; Chen Z; Jiang Y; Zhang J
    Nanoscale; 2020 Feb; 12(6):3941-3949. PubMed ID: 32009133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green Synergy Conversion of Waste Graphite in Spent Lithium-Ion Batteries to GO and High-Performance EG Anode Material.
    Yang S; Yang G; Lan M; Zou J; Zhang X; Lai F; Xiang D; Wang H; Liu K; Li Q
    Small; 2024 May; 20(22):e2305785. PubMed ID: 38143289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteroatom-doped carbon materials with interconnected channels as ultrastable anodes for lithium/sodium ion batteries.
    Li Z; Cai L; Chu K; Xu S; Yao G; Wei L; Zheng F
    Dalton Trans; 2021 Mar; 50(12):4335-4344. PubMed ID: 33688894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexagonal Sb Nanocrystals as High-Capacity and Long-Cycle Anode Materials for Sodium-Ion Batteries.
    Zhang N; Chen X; Xu J; He P; Ding X
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26728-26736. PubMed ID: 37218657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot synthesis of boron-doped cobalt oxide nanorod coupled with reduced graphene oxide for sodium ion batteries.
    Zhou N; Luo G; Qin W; Wu C; Jia C
    J Colloid Interface Sci; 2023 Jun; 640():710-718. PubMed ID: 36898177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binary Iron Sulfide as a Low-Cost and High-Performance Anode for Lithium-/Sodium-Ion Batteries.
    Tang Q; Jiang Q; Wu T; Wu T; Ding Z; Wu J; Yu H; Huang K
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52888-52898. PubMed ID: 33198468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Honeycomb-Structured MoSe
    Li Z; Yu L; Tao X; Li Y; Zhang L; He X; Chen Y; Xiong S; Hu W; Li J; Wang J; Jin H; Wang S
    Small; 2024 Feb; 20(6):e2304124. PubMed ID: 37749960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable synthesis of N/S co-doped hard carbon microspheres as a high-performance anode material for sodium-ion batteries.
    Zhang Z; Huang B; Lai T; Sheng A; Zhong S; Yang J; Li Y
    Nanotechnology; 2023 Dec; 35(11):. PubMed ID: 38081064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.