These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29876589)

  • 1. Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection.
    Gorjanc G; Gaynor RC; Hickey JM
    Theor Appl Genet; 2018 Sep; 131(9):1953-1966. PubMed ID: 29876589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AlphaMate: a program for optimizing selection, maintenance of diversity and mate allocation in breeding programs.
    Gorjanc G; Hickey JM
    Bioinformatics; 2018 Oct; 34(19):3408-3411. PubMed ID: 29722792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies of preserving genetic diversity while maximizing genetic response from implementing genomic selection in pulse breeding programs.
    Li Y; Kaur S; Pembleton LW; Valipour-Kahrood H; Rosewarne GM; Daetwyler HD
    Theor Appl Genet; 2022 Jun; 135(6):1813-1828. PubMed ID: 35316351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal recurrent genomic selection: an attractive tool to leverage hybrid wheat breeding.
    Rembe M; Zhao Y; Jiang Y; Reif JC
    Theor Appl Genet; 2019 Mar; 132(3):687-698. PubMed ID: 30488192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass.
    Pembleton LW; Inch C; Baillie RC; Drayton MC; Thakur P; Ogaji YO; Spangenberg GC; Forster JW; Daetwyler HD; Cogan NOI
    Theor Appl Genet; 2018 Sep; 131(9):1891-1902. PubMed ID: 29860624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection.
    Daetwyler HD; Hayden MJ; Spangenberg GC; Hayes BJ
    Genetics; 2015 Aug; 200(4):1341-8. PubMed ID: 26092719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic selection strategies for clonally propagated crops.
    Werner CR; Gaynor RC; Sargent DJ; Lillo A; Gorjanc G; Hickey JM
    Theor Appl Genet; 2023 Mar; 136(4):74. PubMed ID: 36952013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the use of plant genetic resources to sustain breeding programs' efficiency.
    Sanchez D; Sadoun SB; Mary-Huard T; Allier A; Moreau L; Charcosset A
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2205780119. PubMed ID: 36972431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of long-term trends in genetic mean and variance after the introduction of genomic selection in layers: a simulation study.
    Pocrnic I; Obšteter J; Gaynor RC; Wolc A; Gorjanc G
    Front Genet; 2023; 14():1168212. PubMed ID: 37234871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic prediction in hybrid breeding: II. Reciprocal recurrent genomic selection with full-sib and half-sib families.
    Melchinger AE; Frisch M
    Theor Appl Genet; 2023 Aug; 136(9):203. PubMed ID: 37653062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient use of genomic information for sustainable genetic improvement in small cattle populations.
    Obšteter J; Jenko J; Hickey JM; Gorjanc G
    J Dairy Sci; 2019 Nov; 102(11):9971-9982. PubMed ID: 31477287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection.
    Labroo MR; Rutkoski JE
    BMC Genomics; 2022 Oct; 23(1):736. PubMed ID: 36316650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Results from rapid-cycle recurrent genomic selection in spring bread wheat.
    Dreisigacker S; Pérez-Rodríguez P; Crespo-Herrera L; Bentley AR; Crossa J
    G3 (Bethesda); 2023 Apr; 13(4):. PubMed ID: 36702618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Genomic Selection for a Sorghum Breeding Program in Haiti: A Simulation Study.
    Muleta KT; Pressoir G; Morris GP
    G3 (Bethesda); 2019 Feb; 9(2):391-401. PubMed ID: 30530641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection on Expected Maximum Haploid Breeding Values Can Increase Genetic Gain in Recurrent Genomic Selection.
    Müller D; Schopp P; Melchinger AE
    G3 (Bethesda); 2018 Mar; 8(4):1173-1181. PubMed ID: 29434032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection.
    Müller D; Schopp P; Melchinger AE
    G3 (Bethesda); 2017 Mar; 7(3):801-811. PubMed ID: 28064189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotyping crossing parents and family bulks can facilitate cost-efficient genomic prediction strategies in small-scale line breeding programs.
    Michel S; Löschenberger F; Ametz C; Bürstmayr H
    Theor Appl Genet; 2021 May; 134(5):1575-1586. PubMed ID: 33638651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic selection for agronomic traits in a winter wheat breeding program.
    Ficht A; Konkin DJ; Cram D; Sidebottom C; Tan Y; Pozniak C; Rajcan I
    Theor Appl Genet; 2023 Mar; 136(3):38. PubMed ID: 36897431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of training population design on genomic prediction accuracy in wheat.
    Edwards SM; Buntjer JB; Jackson R; Bentley AR; Lage J; Byrne E; Burt C; Jack P; Berry S; Flatman E; Poupard B; Smith S; Hayes C; Gaynor RC; Gorjanc G; Howell P; Ober E; Mackay IJ; Hickey JM
    Theor Appl Genet; 2019 Jul; 132(7):1943-1952. PubMed ID: 30888431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic selection of parents and crosses beyond the native gene pool of a breeding program.
    Michel S; Löschenberger F; Ametz C; Bürstmayr H
    Plant Genome; 2021 Nov; 14(3):e20153. PubMed ID: 34651462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.