These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29876672)

  • 41. Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor.
    Chen L; He L; Ma F; Liu W; Wang Y; Silver MA; Chen L; Zhu L; Gui D; Diwu J; Chai Z; Wang S
    ACS Appl Mater Interfaces; 2018 May; 10(18):15364-15368. PubMed ID: 29694784
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TDDFT study on intramolecular hydrogen bond of photoexcited methyl salicylate.
    Qu P; Tian D
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():529-33. PubMed ID: 24374479
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A DFT/TDDFT study on the excited-state hydrogen bonding dynamics of 6-aminocoumarin in water solution.
    Zhang M; Ren B; Wang Y; Zhao C
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():191-5. PubMed ID: 23103460
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensing mechanism for biothiols chemosensor DCO: roles of excited-state hydrogen-bonding and intramolecular charge transfer.
    Chen JS; Yuan MH; Wang JP; Yang Y; Chu TS
    J Phys Chem A; 2014 Oct; 118(39):8986-95. PubMed ID: 24897129
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The investigation of excited state proton transfer mechanism in water-bridged 7-azaindole.
    Zhang YJ; Zhao JF; Li YQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():147-51. PubMed ID: 26301539
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material.
    Kalidindi SB; Oh H; Hirscher M; Esken D; Wiktor C; Turner S; Van Tendeloo G; Fischer RA
    Chemistry; 2012 Aug; 18(35):10848-56. PubMed ID: 22886887
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulation of the 4-aminophthalimide spectral properties by hydrogen bonds in water.
    Yang D; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():214-24. PubMed ID: 24835729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical Study of the ESIPT Process for a New Natural Product Quercetin.
    Yang Y; Zhao J; Li Y
    Sci Rep; 2016 Aug; 6():32152. PubMed ID: 27574105
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Excited-state hydrogen-bonding dynamics of camphorsulfonic acid doped polyaniline: a theoretical study.
    Zhang Y; Duan Y; Wang T
    Phys Chem Chem Phys; 2014 Dec; 16(47):26261-5. PubMed ID: 25363721
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantum chemical study on influence of intermolecular hydrogen bonding on the geometry, the atomic charges and the vibrational dynamics of 2,6-dichlorobenzonitrile.
    Agarwal P; Bee S; Gupta A; Tandon P; Rastogi VK; Mishra S; Rawat P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():464-82. PubMed ID: 24287056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen bonding and reactivity of water to azines in their S1 (n,π*) electronic excited states in the gas phase and in solution.
    Reimers JR; Cai ZL
    Phys Chem Chem Phys; 2012 Jul; 14(25):8791-802. PubMed ID: 22532059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TD-DFT study on fluoride-sensing mechanism of 2-(2'-phenylureaphenyl)benzoxazole: the way to inhibit the ESIPT process.
    Li GY; Chu T
    Phys Chem Chem Phys; 2011 Dec; 13(46):20766-71. PubMed ID: 21996924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A TDDFT/EFP1 study on hydrogen bonding dynamics of coumarin 151 in water.
    Ramegowda M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():99-104. PubMed ID: 25203215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Density functional studies on the effects of hydrogen bonding on the formation of a charge-transfer complex between p-benzoquinone and 2,6-dimethoxyphenol.
    Bangal PR
    J Phys Chem A; 2007 Jun; 111(25):5536-43. PubMed ID: 17539618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TD-DFT Study of the Double Excited-State Intramolecular Proton Transfer Mechanism of 1,3-Bis(2-pyridylimino)-4,7-dihydroxyisoindole.
    Ma C; Yang Y; Li C; Liu Y
    J Phys Chem A; 2015 Dec; 119(51):12686-92. PubMed ID: 26616583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-assembling covalent organic framework functionalized magnetic graphene hydrophilic biocomposites as an ultrasensitive matrix for N-linked glycopeptide recognition.
    Wang J; Li J; Gao M; Zhang X
    Nanoscale; 2017 Aug; 9(30):10750-10756. PubMed ID: 28715013
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porosity Prediction through Hydrogen Bonding in Covalent Organic Frameworks.
    Karak S; Kumar S; Pachfule P; Banerjee R
    J Am Chem Soc; 2018 Apr; 140(15):5138-5145. PubMed ID: 29597346
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The rotational dynamics of H
    Pham T; Forrest KA; Mostrom M; Hunt JR; Furukawa H; Eckert J; Space B
    Phys Chem Chem Phys; 2017 May; 19(20):13075-13082. PubMed ID: 28484768
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.
    Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(25):8875-83. PubMed ID: 19496589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microscopic Origins of Poor Crystallinity in the Synthesis of Covalent Organic Framework COF-5.
    Nguyen V; Grünwald M
    J Am Chem Soc; 2018 Mar; 140(9):3306-3311. PubMed ID: 29394058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.