These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29876816)

  • 1. Genome Assembly.
    Clum A
    Methods Mol Biol; 2018; 1775():141-153. PubMed ID: 29876816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome sequence assembly algorithms and misassembly identification methods.
    Meng Y; Lei Y; Gao J; Liu Y; Ma E; Ding Y; Bian Y; Zu H; Dong Y; Zhu X
    Mol Biol Rep; 2022 Nov; 49(11):11133-11148. PubMed ID: 36151399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph.
    Li Z; Chen Y; Mu D; Yuan J; Shi Y; Zhang H; Gan J; Li N; Hu X; Liu B; Yang B; Fan W
    Brief Funct Genomics; 2012 Jan; 11(1):25-37. PubMed ID: 22184334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study.
    Cerdeira LT; Carneiro AR; Ramos RT; de Almeida SS; D'Afonseca V; Schneider MP; Baumbach J; Tauch A; McCulloch JA; Azevedo VA; Silva A
    J Microbiol Methods; 2011 Aug; 86(2):218-23. PubMed ID: 21620904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safe and Complete Contig Assembly Through Omnitigs.
    Tomescu AI; Medvedev P
    J Comput Biol; 2017 Jun; 24(6):590-602. PubMed ID: 27749096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FSG: Fast String Graph Construction for De Novo Assembly.
    Bonizzoni P; Vedova GD; Pirola Y; Previtali M; Rizzi R
    J Comput Biol; 2017 Oct; 24(10):953-968. PubMed ID: 28715269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.
    Swain MT; Tsai IJ; Assefa SA; Newbold C; Berriman M; Otto TD
    Nat Protoc; 2012 Jun; 7(7):1260-84. PubMed ID: 22678431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.
    Sato K; Kuroki Y; Kumita W; Fujiyama A; Toyoda A; Kawai J; Iriki A; Sasaki E; Okano H; Sakakibara Y
    Sci Rep; 2015 Nov; 5():16894. PubMed ID: 26586576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient de novo assembly of large genomes using compressed data structures.
    Simpson JT; Durbin R
    Genome Res; 2012 Mar; 22(3):549-56. PubMed ID: 22156294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Apache Spark on genome assembly for scalable overlap-graph reduction.
    Paul AJ; Lawrence D; Song M; Lim SH; Pan C; Ahn TH
    Hum Genomics; 2019 Oct; 13(Suppl 1):48. PubMed ID: 31639049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EPGA: de novo assembly using the distributions of reads and insert size.
    Luo J; Wang J; Zhang Z; Wu FX; Li M; Pan Y
    Bioinformatics; 2015 Mar; 31(6):825-33. PubMed ID: 25406329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OSLay: optimal syntenic layout of unfinished assemblies.
    Richter DC; Schuster SC; Huson DH
    Bioinformatics; 2007 Jul; 23(13):1573-9. PubMed ID: 17463020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ISEA: Iterative Seed-Extension Algorithm for De Novo Assembly Using Paired-End Information and Insert Size Distribution.
    Li M; Liao Z; He Y; Wang J; Luo J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):916-925. PubMed ID: 27076460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient construction of an assembly string graph using the FM-index.
    Simpson JT; Durbin R
    Bioinformatics; 2010 Jun; 26(12):i367-73. PubMed ID: 20529929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PacBio Sequencing and Its Applications.
    Rhoads A; Au KF
    Genomics Proteomics Bioinformatics; 2015 Oct; 13(5):278-89. PubMed ID: 26542840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective de novo assembly of fish genome using haploid larvae.
    Iwasaki Y; Nishiki I; Nakamura Y; Yasuike M; Kai W; Nomura K; Yoshida K; Nomura Y; Fujiwara A; Kobayashi T; Ototake M
    Gene; 2016 Feb; 576(2 Pt 1):644-9. PubMed ID: 26478467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.