These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 29876853)
1. Effect of multi-wall carbon nanotubes on Cr(VI) reduction by citric acid: Implications for their use in soil remediation. Zhang Y; Yang J; Zhong L; Liu L Environ Sci Pollut Res Int; 2018 Aug; 25(24):23791-23798. PubMed ID: 29876853 [TBL] [Abstract][Full Text] [Related]
2. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. Hu J; Chen C; Zhu X; Wang X J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001 [TBL] [Abstract][Full Text] [Related]
3. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light. Li Y; Chen C; Zhang J; Lan Y Chemosphere; 2015 May; 127():87-92. PubMed ID: 25662741 [TBL] [Abstract][Full Text] [Related]
4. Preparation of TiO2/multiwalled carbon nanotube composites and their applications in photocatalytic reduction of Cr(VI) study. Tan X; Fang M; Wang X J Nanosci Nanotechnol; 2008 Nov; 8(11):5624-31. PubMed ID: 19198280 [TBL] [Abstract][Full Text] [Related]
5. Adsorption and reduction of Cr(VI) by hydroxylated multiwalled carbon nanotubes: effects of humic acid and surfactants. Huang Y; Song K; Luo W; Yang J Environ Sci Pollut Res Int; 2020 Apr; 27(11):12746-12754. PubMed ID: 32008189 [TBL] [Abstract][Full Text] [Related]
6. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. Pillay K; Cukrowska EM; Coville NJ J Hazard Mater; 2009 Jul; 166(2-3):1067-75. PubMed ID: 19157694 [TBL] [Abstract][Full Text] [Related]
7. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH. Sun J; Mao JD; Gong H; Lan Y J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of magnetic Fe3O 4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI). Chen R; Chai L; Li Q; Shi Y; Wang Y; Mohammad A Environ Sci Pollut Res Int; 2013 Oct; 20(10):7175-85. PubMed ID: 23644945 [TBL] [Abstract][Full Text] [Related]
9. Catalytic effects of functionalized carbon nanotubes on dehydrochlorination of 1,1,2,2-tetrachloroethane. Chen W; Zhu D; Zheng S; Chen W Environ Sci Technol; 2014 Apr; 48(7):3856-63. PubMed ID: 24617768 [TBL] [Abstract][Full Text] [Related]
10. Adsorptive removal of benzene and toluene from aqueous solutions by oxygen-functionalized multi-walled carbon nanotubes derived from rice husk waste: A comparative study. H Q Le A; Hoang HY; Le Van T; Hoang Nguyen T; Uyen Dao M Chemosphere; 2023 Sep; 336():139265. PubMed ID: 37339705 [TBL] [Abstract][Full Text] [Related]
11. Adsorptive behavior of multi-walled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices. Pereira HA; da Boit Martinello K; Vieira Y; Diel JC; Netto MS; Reske GD; Lorenzett E; Silva LFO; Burgo TAL; Dotto GL Chemosphere; 2023 Jun; 325():138384. PubMed ID: 36931403 [TBL] [Abstract][Full Text] [Related]
12. Multi wall carbon nanotubes application for treatment of Cr(VI)-contaminated groundwater; Modeling of batch & column experiments. Mpouras T; Polydera A; Dermatas D; Verdone N; Vilardi G Chemosphere; 2021 Apr; 269():128749. PubMed ID: 33272668 [TBL] [Abstract][Full Text] [Related]
13. Reduction of Cr(VI) by malic acid in aqueous Fe-rich soil suspensions. Zhong L; Yang J Chemosphere; 2012 Mar; 86(10):973-8. PubMed ID: 22153486 [TBL] [Abstract][Full Text] [Related]
14. Cr(VI) Adsorption to Magnetic Iron Oxide Nanoparticle-Multi-Walled Carbon Nanotube Adsorbents. Lee CG; Kim SB Water Environ Res; 2016 Nov; 88(11):2111-2120. PubMed ID: 28661327 [TBL] [Abstract][Full Text] [Related]
15. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate. Sarkar B; Naidu R; Krishnamurti GS; Megharaj M Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488 [TBL] [Abstract][Full Text] [Related]
16. Chemodynamics of chromium reduction in soils: implications to bioavailability. Choppala G; Bolan N; Seshadri B J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747 [TBL] [Abstract][Full Text] [Related]
17. One stone two birds: novel carbon nanotube/Bi Zhang X; Shi D; Fan J Environ Sci Pollut Res Int; 2017 Oct; 24(29):23309-23320. PubMed ID: 28836094 [TBL] [Abstract][Full Text] [Related]
18. Fe-Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment. Kang Z; Gao H; Ma X; Jia X; Wen D Molecules; 2023 May; 28(11):. PubMed ID: 37298888 [TBL] [Abstract][Full Text] [Related]
19. Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Lv X; Xu J; Jiang G; Xu X Chemosphere; 2011 Nov; 85(7):1204-9. PubMed ID: 22000744 [TBL] [Abstract][Full Text] [Related]
20. Remediation of Cr(VI)-contaminated soil by sulfidated zero-valent iron: The effect of citric acid as eluant and modifying agent. Wang X; Zhang Y; Zhang Y; Xu C Chemosphere; 2023 Feb; 313():137436. PubMed ID: 36462563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]