BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29876853)

  • 1. Effect of multi-wall carbon nanotubes on Cr(VI) reduction by citric acid: Implications for their use in soil remediation.
    Zhang Y; Yang J; Zhong L; Liu L
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):23791-23798. PubMed ID: 29876853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light.
    Li Y; Chen C; Zhang J; Lan Y
    Chemosphere; 2015 May; 127():87-92. PubMed ID: 25662741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of TiO2/multiwalled carbon nanotube composites and their applications in photocatalytic reduction of Cr(VI) study.
    Tan X; Fang M; Wang X
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5624-31. PubMed ID: 19198280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and reduction of Cr(VI) by hydroxylated multiwalled carbon nanotubes: effects of humic acid and surfactants.
    Huang Y; Song K; Luo W; Yang J
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12746-12754. PubMed ID: 32008189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution.
    Pillay K; Cukrowska EM; Coville NJ
    J Hazard Mater; 2009 Jul; 166(2-3):1067-75. PubMed ID: 19157694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
    Sun J; Mao JD; Gong H; Lan Y
    J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of magnetic Fe3O 4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI).
    Chen R; Chai L; Li Q; Shi Y; Wang Y; Mohammad A
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7175-85. PubMed ID: 23644945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic effects of functionalized carbon nanotubes on dehydrochlorination of 1,1,2,2-tetrachloroethane.
    Chen W; Zhu D; Zheng S; Chen W
    Environ Sci Technol; 2014 Apr; 48(7):3856-63. PubMed ID: 24617768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorptive removal of benzene and toluene from aqueous solutions by oxygen-functionalized multi-walled carbon nanotubes derived from rice husk waste: A comparative study.
    H Q Le A; Hoang HY; Le Van T; Hoang Nguyen T; Uyen Dao M
    Chemosphere; 2023 Sep; 336():139265. PubMed ID: 37339705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorptive behavior of multi-walled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices.
    Pereira HA; da Boit Martinello K; Vieira Y; Diel JC; Netto MS; Reske GD; Lorenzett E; Silva LFO; Burgo TAL; Dotto GL
    Chemosphere; 2023 Jun; 325():138384. PubMed ID: 36931403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi wall carbon nanotubes application for treatment of Cr(VI)-contaminated groundwater; Modeling of batch & column experiments.
    Mpouras T; Polydera A; Dermatas D; Verdone N; Vilardi G
    Chemosphere; 2021 Apr; 269():128749. PubMed ID: 33272668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of Cr(VI) by malic acid in aqueous Fe-rich soil suspensions.
    Zhong L; Yang J
    Chemosphere; 2012 Mar; 86(10):973-8. PubMed ID: 22153486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cr(VI) Adsorption to Magnetic Iron Oxide Nanoparticle-Multi-Walled Carbon Nanotube Adsorbents.
    Lee CG; Kim SB
    Water Environ Res; 2016 Nov; 88(11):2111-2120. PubMed ID: 28661327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.
    Sarkar B; Naidu R; Krishnamurti GS; Megharaj M
    Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemodynamics of chromium reduction in soils: implications to bioavailability.
    Choppala G; Bolan N; Seshadri B
    J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One stone two birds: novel carbon nanotube/Bi
    Zhang X; Shi D; Fan J
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23309-23320. PubMed ID: 28836094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe-Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment.
    Kang Z; Gao H; Ma X; Jia X; Wen D
    Molecules; 2023 May; 28(11):. PubMed ID: 37298888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes.
    Lv X; Xu J; Jiang G; Xu X
    Chemosphere; 2011 Nov; 85(7):1204-9. PubMed ID: 22000744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of Cr(VI)-contaminated soil by sulfidated zero-valent iron: The effect of citric acid as eluant and modifying agent.
    Wang X; Zhang Y; Zhang Y; Xu C
    Chemosphere; 2023 Feb; 313():137436. PubMed ID: 36462563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.