These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 29877170)
1. Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy. Castro FC; Dravid VP Microsc Microanal; 2018 Jun; 24(3):214-220. PubMed ID: 29877170 [TBL] [Abstract][Full Text] [Related]
2. Fe valence determination and Li elemental distribution in lithiated FeO₀.₇F₁.₃/C nanocomposite battery materials by electron energy loss spectroscopy (EELS). Cosandey F; Su D; Sina M; Pereira N; Amatucci GG Micron; 2012 Jan; 43(1):22-9. PubMed ID: 21696971 [TBL] [Abstract][Full Text] [Related]
3. Quantitative analysis of Li distributions in battery material Li1-xFePO4 using Fe M2,3-edge and valence electron energy loss spectra. Kobayashi S; Fisher CAJ; Kuwabara A; Ukyo Y; Ikuhara Y Microscopy (Oxf); 2017 Aug; 66(4):254-260. PubMed ID: 28431172 [TBL] [Abstract][Full Text] [Related]
4. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. Nomura Y; Yamamoto K; Hirayama T; Ohkawa M; Igaki E; Hojo N; Saitoh K Nano Lett; 2018 Sep; 18(9):5892-5898. PubMed ID: 30130410 [TBL] [Abstract][Full Text] [Related]
6. EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries. Cosandey F; Al-Sharab JF; Badway F; Amatucci GG; Stadelmann P Microsc Microanal; 2007 Apr; 13(2):87-95. PubMed ID: 17367548 [TBL] [Abstract][Full Text] [Related]
7. Origin and Suppression of Beam Damage-Induced Oxygen-K Edge Artifact from γ-Al Ayoola HO; Li CH; House SD; Bonifacio CS; Kisslinger K; Jinschek J; Saidi WA; Yang JC Ultramicroscopy; 2020 Dec; 219():113127. PubMed ID: 33059174 [TBL] [Abstract][Full Text] [Related]
8. Systematic analysis of electron energy-loss near-edge structures in Li-ion battery materials. Saitoh M; Gao X; Ogawa T; Ikuhara YH; Kobayashi S; Fisher CAJ; Kuwabara A; Ikuhara Y Phys Chem Chem Phys; 2018 Oct; 20(38):25052-25061. PubMed ID: 30247492 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale controlled Li-insertion reaction induced by scanning electron-beam irradiation in a Li Kitta M; Kohyama M Phys Chem Chem Phys; 2017 May; 19(18):11581-11587. PubMed ID: 28429025 [TBL] [Abstract][Full Text] [Related]
10. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy. Terauchi M Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665 [TBL] [Abstract][Full Text] [Related]
11. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Yamamoto K; Iriyama Y; Hirayama T Microscopy (Oxf); 2017 Feb; 66(1):50-61. PubMed ID: 27733434 [TBL] [Abstract][Full Text] [Related]
12. Vibrational and valence aloof beam EELS: A potential tool for nondestructive characterization of nanoparticle surfaces. Crozier PA Ultramicroscopy; 2017 Sep; 180():104-114. PubMed ID: 28377216 [TBL] [Abstract][Full Text] [Related]
13. Origin of valence and core excitations in LiFePO(4) and FePO(4). Kinyanjui MK; Axmann P; Wohlfahrt-Mehrens M; Moreau P; Boucher F; Kaiser U J Phys Condens Matter; 2010 Jul; 22(27):275501. PubMed ID: 21399256 [TBL] [Abstract][Full Text] [Related]
14. Laterally resolved EELS for ELNES mapping of the Fe L 2,3 - and O K-edge. Golla-Schindler U; Benner G; Putnis A Ultramicroscopy; 2003 Sep; 96(3-4):573-82. PubMed ID: 12871818 [TBL] [Abstract][Full Text] [Related]
15. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. Wang F; Graetz J; Moreno MS; Ma C; Wu L; Volkov V; Zhu Y ACS Nano; 2011 Feb; 5(2):1190-7. PubMed ID: 21218844 [TBL] [Abstract][Full Text] [Related]
16. In situ electron energy-loss spectroscopy in liquids. Holtz ME; Yu Y; Gao J; Abruña HD; Muller DA Microsc Microanal; 2013 Aug; 19(4):1027-35. PubMed ID: 23721691 [TBL] [Abstract][Full Text] [Related]
17. Excitonic, vibrational, and van der Waals interactions in electron energy loss spectroscopy. Mizoguchi T; Miyata T; Olovsson W Ultramicroscopy; 2017 Sep; 180():93-103. PubMed ID: 28285731 [TBL] [Abstract][Full Text] [Related]
19. Detection of local chemical states of lithium and their spatial mapping by scanning transmission electron microscopy, electron energy-loss spectroscopy and hyperspectral image analysis. Muto S; Tatsumi K Microscopy (Oxf); 2017 Feb; 66(1):39-49. PubMed ID: 27655938 [TBL] [Abstract][Full Text] [Related]
20. Electroplating lithium transition metal oxides. Zhang H; Ning H; Busbee J; Shen Z; Kiggins C; Hua Y; Eaves J; Davis J; Shi T; Shao YT; Zuo JM; Hong X; Chan Y; Wang S; Wang P; Sun P; Xu S; Liu J; Braun PV Sci Adv; 2017 May; 3(5):e1602427. PubMed ID: 28508061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]