These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29877339)

  • 1. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam.
    Xue Y; Wang Y; Zhou S; Chen H; Rui G; Gu B; Zhan Q
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):953-958. PubMed ID: 29877339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.
    Gu B; Xu D; Rui G; Lian M; Cui Y; Zhan Q
    Appl Opt; 2015 Sep; 54(27):8123-9. PubMed ID: 26406514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flattop focusing with full Poincaré beams under low numerical aperture illumination.
    Han W; Cheng W; Zhan Q
    Opt Lett; 2011 May; 36(9):1605-7. PubMed ID: 21540942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical forces on submicron particles induced by full Poincaré beams.
    Wang LG
    Opt Express; 2012 Sep; 20(19):20814-26. PubMed ID: 23037205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields.
    Rui G; Chen J; Wang X; Gu B; Cui Y; Zhan Q
    Opt Express; 2016 Oct; 24(21):23667-23676. PubMed ID: 27828203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization.
    Man Z; Fu S; Wei G
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical manipulation using highly focused alternate radially and azimuthally polarized beams modulated by a devil's lens.
    Liu Z; Jones PH
    J Opt Soc Am A Opt Image Sci Vis; 2016 Dec; 33(12):2501-2508. PubMed ID: 27906277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence.
    Tong R; Dong Z; Chen Y; Wang F; Cai Y; Setälä T
    Opt Express; 2020 Mar; 28(7):9713-9727. PubMed ID: 32225573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic spin-controlled generation and transformation of 3D optical polarization topologies enabled by all-dielectric metasurfaces.
    Huo P; Zhang S; Fan Q; Lu Y; Xu T
    Nanoscale; 2019 Jun; 11(22):10646-10654. PubMed ID: 31107482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations.
    Li M; Yan S; Yao B; Liang Y; Han G; Zhang P
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):1341-7. PubMed ID: 27409691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light.
    Guan J; Lin J; Ma Y; Tan J; Jin P
    Sci Rep; 2017 Aug; 7(1):7380. PubMed ID: 28785076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single beam optical trapping integrated in a confocal microscope for biological applications.
    Visscher K; Brakenhoff GJ
    Cytometry; 1991; 12(6):486-91. PubMed ID: 1764973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency non-diffractive generator of arbitrary vectorial optical fields with minimal optical elements.
    Lam B; Guo C
    Opt Commun; 2020 May; 463():125443. PubMed ID: 32421035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Force Effects of Rayleigh Particles by Cylindrical Vector Beams.
    Zhao Y; Zhou L; Jiang X; Zhu L; Shi Q
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vector optical field with the polarization varying along an arbitrary circular trajectory on the Poincaré sphere.
    Lü JQ; Wang WY; Cheng TY; Lu ZW; Liu S
    Opt Express; 2021 Nov; 29(24):39718-39728. PubMed ID: 34809329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping force and optical lifting under focused evanescent wave illumination.
    Ganic D; Gan X; Gu M
    Opt Express; 2004 Nov; 12(22):5533-8. PubMed ID: 19484115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vectorial optical field generator for the creation of arbitrarily complex fields.
    Han W; Yang Y; Cheng W; Zhan Q
    Opt Express; 2013 Sep; 21(18):20692-706. PubMed ID: 24103942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metalens for Generating a Customized Vectorial Focal Curve.
    Wang R; Intaravanne Y; Li S; Han J; Chen S; Liu J; Zhang S; Li L; Chen X
    Nano Lett; 2021 Mar; 21(5):2081-2087. PubMed ID: 33630607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization.
    Lerman GM; Levy U
    Opt Lett; 2007 Aug; 32(15):2194-6. PubMed ID: 17671581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of radial-variant polarization for creating tunable bifocusing spots.
    Gu B; Pan Y; Wu JL; Cui Y
    J Opt Soc Am A Opt Image Sci Vis; 2014 Feb; 31(2):253-7. PubMed ID: 24562022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.