These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29877345)

  • 1. Nondestructive, fast, and cost-effective image processing method for roughness measurement of randomly rough metallic surfaces.
    Ghodrati S; Kandi SG; Mohseni M
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):998-1013. PubMed ID: 29877345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ellipsometric analysis for surface roughness and texture.
    Nee SM
    Appl Opt; 1988 Jul; 27(14):2819-31. PubMed ID: 20531846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry.
    Gontard LC; López-Castro JD; González-Rovira L; Vázquez-Martínez JM; Varela-Feria FM; Marcos M; Calvino JJ
    Ultramicroscopy; 2017 Jun; 177():106-114. PubMed ID: 28340394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of finite stylus width in surface contact profilometry.
    O'Donnell KA
    Appl Opt; 1993 Sep; 32(25):4922-8. PubMed ID: 20830169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light scattering from glossy coatings on paper.
    Lettieri TR; Marx E; Song JF; Vorburger TV
    Appl Opt; 1991 Oct; 30(30):4439-47. PubMed ID: 20717222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of roughness parameters of metallic surfaces using terahertz reflection spectra.
    Jagannathan A; Gatesman AJ; Giles RH
    Opt Lett; 2009 Jul; 34(13):1927-9. PubMed ID: 19571954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelength-dependent roughness: a quantitative approach to characterizing the topography of rough titanium surfaces.
    Wieland M; Textor M; Spencer ND; Brunette DM
    Int J Oral Maxillofac Implants; 2001; 16(2):163-81. PubMed ID: 11324205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of unwanted variability in measurement and description of skin surface topography.
    Connemann BJ; Busche H; Kreusch J; Wolff HH
    Skin Res Technol; 1996 Feb; 2(1):40-8. PubMed ID: 27327058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Rapid prediction of surface roughness of natural polymer material by visible/near infrared spectroscopy as a non-contact measurement method].
    Yang Z; Liu YN; Lü B; Zhang MM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar; 33(3):682-5. PubMed ID: 23705432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro experiment using porcine artery for evaluation of ultrasonic measurement of arterial luminal surface profile.
    Nagai Y; Cinthio M; Hasegawa H; Bengtsson M; Evander M; Albinsson J; Kanai H
    J Med Ultrason (2001); 2014 Oct; 41(4):431-7. PubMed ID: 27278023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining TEM, AFM, and Profilometry for Quantitative Topography Characterization Across All Scales.
    Gujrati A; Khanal SR; Pastewka L; Jacobs TDB
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29169-29178. PubMed ID: 30052425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some Considerations about the Use of Contact and Confocal Microscopy Methods in Surface Texture Measurement.
    García JC; Sanz Lobera A; Maresca P; Pareja TF; Wang C
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30127320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.
    Qiu J; Ran DF; Liu YB; Liu LH
    Appl Opt; 2016 Jul; 55(20):5423-31. PubMed ID: 27409321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Structure analysis of the skin surface using computer-assisted laser profilometry. New method for the quantitative assessment of roughness structure of the skin].
    Saur R; Schramm U; Steinhoff R; Wolff HH
    Hautarzt; 1991 Aug; 42(8):499-506. PubMed ID: 1917470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic measurements of surface roughness.
    Blessing GV; Slotwinski JA; Eitzen DG; Ryan HM
    Appl Opt; 1993 Jul; 32(19):3433-7. PubMed ID: 20829961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional visualization and quantification of the mandibular articular surface by optical profilometry.
    Dirksen D; Stratmann U; Kleinheinz J; von Bally G; Bollmann F
    Cells Tissues Organs; 1999; 164(4):212-20. PubMed ID: 10436329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-shot profilometry of rough surfaces using hyperspectral interferometry.
    Widjanarko T; Huntley JM; Ruiz PD
    Opt Lett; 2012 Feb; 37(3):350-2. PubMed ID: 22297349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast surface profilometry utilizing structured illumination microscopy based on the time-domain phase-shift technique.
    Liu L; Tang Y; Xie Z; Feng J; He Y; Hu S
    Appl Opt; 2019 Oct; 58(30):8180-8186. PubMed ID: 31674488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferometric profiler for rough surfaces.
    Caber PJ
    Appl Opt; 1993 Jul; 32(19):3438-41. PubMed ID: 20829962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel hybrid stylus for nanometric profilometry for large optical surfaces.
    Walker D; Yang HS; Kim SW
    Opt Express; 2003 Jul; 11(15):1793-8. PubMed ID: 19466061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.