These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29877448)

  • 1. Plasmonic-enhanced chirality examined by generalized wavenumber eigenvalue simulation.
    Kim M; Rho J
    Opt Express; 2018 May; 26(11):14051-14057. PubMed ID: 29877448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement.
    Lin D; Huang JS
    Opt Express; 2014 Apr; 22(7):7434-45. PubMed ID: 24718118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.
    Govorov AO; Fan Z
    Chemphyschem; 2012 Jul; 13(10):2551-60. PubMed ID: 22344931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular Dichroism Studies on Plasmonic Nanostructures.
    Wang X; Tang Z
    Small; 2017 Jan; 13(1):. PubMed ID: 27273904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular dichroism enhancement in plasmonic nanorod metamaterials.
    Vestler D; Shishkin I; Gurvitz EA; Nasir ME; Ben-Moshe A; Slobozhanyuk AP; Krasavin AV; Levi-Belenkova T; Shalin AS; Ginzburg P; Markovich G; Zayats AV
    Opt Express; 2018 Jul; 26(14):17841-17848. PubMed ID: 30114069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-Regulated Chiral Nanoplasmonics.
    Duan X; Kamin S; Sterl F; Giessen H; Liu N
    Nano Lett; 2016 Feb; 16(2):1462-6. PubMed ID: 26745446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral plasmonic nanocrescents: large-area fabrication and optical properties.
    Bochenkov VE; Sutherland DS
    Opt Express; 2018 Oct; 26(21):27101-27108. PubMed ID: 30469784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Diffractive Circular Dichroism from Stereoscopic Plasmonic Molecule Array.
    Gu L; Shu R; Liu X; Hu H; Zhan Q
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete nanocubes as plasmonic reporters of molecular chirality.
    Lu F; Tian Y; Liu M; Su D; Zhang H; Govorov AO; Gang O
    Nano Lett; 2013 Jul; 13(7):3145-51. PubMed ID: 23777419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular Dichroism of Chiral Nematic Films of Cellulose Nanocrystals Loaded with Plasmonic Nanoparticles.
    Querejeta-Fernández A; Kopera B; Prado KS; Klinkova A; Methot M; Chauve G; Bouchard J; Helmy AS; Kumacheva E
    ACS Nano; 2015 Oct; 9(10):10377-85. PubMed ID: 26336902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular extinction of plasmonic silver nanocaps and gas sensing.
    Li J; Kotov NA
    Faraday Discuss; 2016; 186():345-52. PubMed ID: 26952921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular dichroism spectroscopy and chiral sensing in optical fibers.
    Dezaki SK; Askarpour AN; Abdipour A
    Opt Express; 2021 Jul; 29(15):23096-23112. PubMed ID: 34614581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam.
    Shang QC; Wu ZS; Qu T; Li ZJ; Bai L; Gong L
    Opt Express; 2013 Apr; 21(7):8677-88. PubMed ID: 23571957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembled plasmonic asymmetric heterodimers with tailorable chiroptical response.
    Hao C; Xu L; Ma W; Wang L; Kuang H; Xu C
    Small; 2014 May; 10(9):1805-12. PubMed ID: 24523129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.
    Hu L; Tian X; Huang Y; Fang L; Fang Y
    Nanoscale; 2016 Feb; 8(6):3720-8. PubMed ID: 26814829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Through-space transfer of chiral information mediated by a plasmonic nanomaterial.
    Ostovar pour S; Rocks L; Faulds K; Graham D; Parchaňský V; Bouř P; Blanch EW
    Nat Chem; 2015 Jul; 7(7):591-6. PubMed ID: 26100808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant-state expansion for open optical systems: generalization to magnetic, chiral, and bi-anisotropic materials.
    Muljarov EA; Weiss T
    Opt Lett; 2018 May; 43(9):1978-1981. PubMed ID: 29714725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced circular dichroism by multipolar radiative coupling.
    Mun J; Rho J
    Opt Lett; 2018 Jun; 43(12):2856-2859. PubMed ID: 29905707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles.
    Lee HE; Kim RM; Ahn HY; Lee YY; Byun GH; Im SW; Mun J; Rho J; Nam KT
    Nat Commun; 2020 Jan; 11(1):263. PubMed ID: 31937767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.