These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 29877526)
1. In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study. Bukhtiyarov AV; Prosvirin IP; Saraev AA; Klyushin AY; Knop-Gericke A; Bukhtiyarov VI Faraday Discuss; 2018 Sep; 208(0):255-268. PubMed ID: 29877526 [TBL] [Abstract][Full Text] [Related]
2. Near-Ambient Pressure XPS and MS Study of CO Oxidation over Model Pd-Au/HOPG Catalysts: The Effect of the Metal Ratio. Bukhtiyarov AV; Prosvirin IP; Panafidin MA; Fedorov AY; Klyushin AY; Knop-Gericke A; Zubavichus YV; Bukhtiyarov VI Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947641 [TBL] [Abstract][Full Text] [Related]
3. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy. Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122 [TBL] [Abstract][Full Text] [Related]
4. Understanding the atomic-level process of CO-adsorption-driven surface segregation of Pd in (AuPd) An H; Ha H; Yoo M; Kim HY Nanoscale; 2017 Aug; 9(33):12077-12086. PubMed ID: 28799609 [TBL] [Abstract][Full Text] [Related]
5. Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support. Carter JH; Althahban S; Nowicka E; Freakley SJ; Morgan DJ; Shah PM; Golunski S; Kiely CJ; Hutchings GJ ACS Catal; 2016 Oct; 6(10):6623-6633. PubMed ID: 27990317 [TBL] [Abstract][Full Text] [Related]
6. Study of Pd-Au bimetallic catalysts for CO oxidation reaction by DFT calculations. Zhang J; Jin H; Sullivan MB; Lim FC; Wu P Phys Chem Chem Phys; 2009 Mar; 11(9):1441-6. PubMed ID: 19224045 [TBL] [Abstract][Full Text] [Related]
7. Effect of annealing in oxygen on alloy structures of Pd-Au bimetallic model catalysts. Yu WY; Zhang L; Mullen GM; Evans EJ; Henkelman G; Mullins CB Phys Chem Chem Phys; 2015 Aug; 17(32):20588-96. PubMed ID: 26200213 [TBL] [Abstract][Full Text] [Related]
8. In situ IR spectroscopic studies of Ni surface segregation induced by CO adsorption on Cu-Ni/SiO2 bimetallic catalysts. Yao Y; Goodman DW Phys Chem Chem Phys; 2014 Feb; 16(8):3823-9. PubMed ID: 24435048 [TBL] [Abstract][Full Text] [Related]
9. In situ formation of Au-Pd bimetallic active sites promoting the physically mixed monometallic catalysts in the liquid-phase oxidation of alcohols. Wang D; Villa A; Spontoni P; Su DS; Prati L Chemistry; 2010 Sep; 16(33):10007-13. PubMed ID: 20623809 [TBL] [Abstract][Full Text] [Related]
10. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. Tao F; Grass ME; Zhang Y; Butcher DR; Aksoy F; Aloni S; Altoe V; Alayoglu S; Renzas JR; Tsung CK; Zhu Z; Liu Z; Salmeron M; Somorjai GA J Am Chem Soc; 2010 Jun; 132(25):8697-703. PubMed ID: 20521788 [TBL] [Abstract][Full Text] [Related]
11. Active Surface Oxygen for Catalytic CO Oxidation on Pd(100) Proceeding under Near Ambient Pressure Conditions. Toyoshima R; Yoshida M; Monya Y; Suzuki K; Mun BS; Amemiya K; Mase K; Kondoh H J Phys Chem Lett; 2012 Nov; 3(21):3182-7. PubMed ID: 26296026 [TBL] [Abstract][Full Text] [Related]
12. Surface Segregation in CuNi Nanoparticle Catalysts During CO Zegkinoglou I; Pielsticker L; Han ZK; Divins NJ; Kordus D; Chen YT; Escudero C; Pérez-Dieste V; Zhu B; Gao Y; Cuenya BR J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(13):8421-8428. PubMed ID: 30976377 [TBL] [Abstract][Full Text] [Related]
13. Catalytic Reactions on Pd-Au Bimetallic Model Catalysts. Han S; Mullins CB Acc Chem Res; 2021 Jan; 54(2):379-387. PubMed ID: 33371669 [TBL] [Abstract][Full Text] [Related]
15. Dealloying Synthesis of Bimetallic (Au-Pd)/CeO Wang H; Zhang D; Zhang R; Ma H; Zhang H; Yao R; Liang M; Zhao Y; Miao Z ACS Omega; 2023 Apr; 8(13):11889-11896. PubMed ID: 37033829 [TBL] [Abstract][Full Text] [Related]
16. Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts. Xie S; Liu Y; Deng J; Zang S; Zhang Z; Arandiyan H; Dai H Environ Sci Technol; 2017 Feb; 51(4):2271-2279. PubMed ID: 28103021 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Hot Electron Flow and Catalytic Synergy by Engineering Core-Shell Structures on Au-Pd Nanocatalysts. Jeon B; Kim D; Kim TS; Lee HK; Park JY ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37927055 [TBL] [Abstract][Full Text] [Related]
18. A near ambient pressure XPS study of Au oxidation. Klyushin AY; Rocha TC; Hävecker M; Knop-Gericke A; Schlögl R Phys Chem Chem Phys; 2014 May; 16(17):7881-6. PubMed ID: 24643747 [TBL] [Abstract][Full Text] [Related]
19. New Strategy toward a Dual Functional Nanocatalyst at Ambient Conditions: Influence of the Pd-Co Interface in the Catalytic Activity of Pd@Co Core-Shell Nanoparticles. Jain R; Gopinath CS ACS Appl Mater Interfaces; 2018 Dec; 10(48):41268-41278. PubMed ID: 30403345 [TBL] [Abstract][Full Text] [Related]
20. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Tao FF; Zhang S; Nguyen L; Zhang X Chem Soc Rev; 2012 Dec; 41(24):7980-93. PubMed ID: 23023152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]