These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 29877532)
1. A surface graft polymerization process on chemically stable medical ePTFE for suppressing platelet adhesion and activation. Liu Y; Munisso MC; Mahara A; Kambe Y; Fukazawa K; Ishihara K; Yamaoka T Biomater Sci; 2018 Jun; 6(7):1908-1915. PubMed ID: 29877532 [TBL] [Abstract][Full Text] [Related]
2. Anti-platelet adhesion and in situ capture of circulating endothelial progenitor cells on ePTFE surface modified with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and hemocompatible peptide 1 (HCP-1). Liu Y; Munisso MC; Mahara A; Kambe Y; Yamaoka T Colloids Surf B Biointerfaces; 2020 Sep; 193():111113. PubMed ID: 32447201 [TBL] [Abstract][Full Text] [Related]
3. Surface functionalization of polytetrafluoroethylene substrate with hybrid processes comprising plasma treatment and chemical reactions. Cheng B; Inoue Y; Ishihara K Colloids Surf B Biointerfaces; 2019 Jan; 173():77-84. PubMed ID: 30267957 [TBL] [Abstract][Full Text] [Related]
4. A mild method for surface-grafting MPC onto poly(ester-urethane) based on aliphatic diurethane diisocyanate with high grafting efficiency. Liu X; Yang B; Hou Z; Zhang N; Gao Y Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109952. PubMed ID: 31499985 [TBL] [Abstract][Full Text] [Related]
5. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. II. Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets. Furuzono T; Ishihara K; Nakabayashi N; Tamada Y Biomaterials; 2000 Feb; 21(4):327-33. PubMed ID: 10656313 [TBL] [Abstract][Full Text] [Related]
6. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. Tateishi T; Kyomoto M; Kakinoki S; Yamaoka T; Ishihara K J Biomed Mater Res A; 2014 May; 102(5):1342-9. PubMed ID: 23720384 [TBL] [Abstract][Full Text] [Related]
7. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets. Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202 [TBL] [Abstract][Full Text] [Related]
8. Nano-scale surface modification of a segmented polyurethane with a phospholipid polymer. Morimoto N; Watanabe A; Iwasaki Y; Akiyoshi K; Ishihara K Biomaterials; 2004 Oct; 25(23):5353-61. PubMed ID: 15130720 [TBL] [Abstract][Full Text] [Related]
9. In vitro biological performances of phosphorylcholine-grafted ePTFE prostheses through RFGD plasma techniques. Chevallier P; Janvier R; Mantovani D; Laroche G Macromol Biosci; 2005 Sep; 5(9):829-39. PubMed ID: 16134089 [TBL] [Abstract][Full Text] [Related]
10. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility. Yuan B; Chen Q; Ding WQ; Liu PS; Wu SS; Lin SC; Shen J; Gai Y ACS Appl Mater Interfaces; 2012 Aug; 4(8):4031-9. PubMed ID: 22856677 [TBL] [Abstract][Full Text] [Related]
11. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Nakabayashi N; Iwasaki Y Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384 [TBL] [Abstract][Full Text] [Related]
12. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469 [TBL] [Abstract][Full Text] [Related]
13. Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization. Hsiue GH; Lee SD; Chang PC; Kao CY J Biomed Mater Res; 1998 Oct; 42(1):134-47. PubMed ID: 9740016 [TBL] [Abstract][Full Text] [Related]
15. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. Lin X; Fukazawa K; Ishihara K ACS Appl Mater Interfaces; 2015 Aug; 7(31):17489-98. PubMed ID: 26202385 [TBL] [Abstract][Full Text] [Related]
16. Superlubricious surface mimicking articular cartilage by grafting poly(2-methacryloyloxyethyl phosphorylcholine) on orthopaedic metal bearings. Kyomoto M; Moro T; Iwasaki Y; Miyaji F; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K J Biomed Mater Res A; 2009 Dec; 91(3):730-41. PubMed ID: 19048637 [TBL] [Abstract][Full Text] [Related]
17. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. Wei Y; Zhang J; Feng X; Liu D J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389 [TBL] [Abstract][Full Text] [Related]
18. Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer. Liu Y; Inoue Y; Mahara A; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(14-15):1514-29. PubMed ID: 24894706 [TBL] [Abstract][Full Text] [Related]
19. Surface modification with PEO-containing triblock copolymer for improved biocompatibility: in vitro and ex vivo studies. Kidane A; Lantz GC; Jo S; Park K J Biomater Sci Polym Ed; 1999; 10(10):1089-105. PubMed ID: 10591134 [TBL] [Abstract][Full Text] [Related]
20. Effects of mobility/immobility of surface modification by 2-methacryloyloxyethyl phosphorylcholine polymer on the durability of polyethylene for artificial joints. Kyomoto M; Moro T; Miyaji F; Hashimoto M; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K J Biomed Mater Res A; 2009 Aug; 90(2):362-71. PubMed ID: 18521890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]