These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29877703)

  • 1. Evaluating the London Dispersion Coefficients of Protein Force Fields Using the Exchange-Hole Dipole Moment Model.
    Walters ET; Mohebifar M; Johnson ER; Rowley CN
    J Phys Chem B; 2018 Jul; 122(26):6690-6701. PubMed ID: 29877703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.
    Mohebifar M; Johnson ER; Rowley CN
    J Chem Theory Comput; 2017 Dec; 13(12):6146-6157. PubMed ID: 29149556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of Alternate Nonpolarizable Force Fields for the Determination of Protein-Ligand Binding Affinities Dominated by Cation-π Interactions.
    Liu H; Fu H; Chipot C; Shao X; Cai W
    J Chem Theory Comput; 2021 Jul; 17(7):3908-3915. PubMed ID: 34125530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hydration structure of methylthiolate from QM/MM molecular dynamics.
    Awoonor-Williams E; Rowley CN
    J Chem Phys; 2018 Jul; 149(4):045103. PubMed ID: 30068187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How accurately do force fields represent protein side chain ensembles?
    Petrović D; Wang X; Strodel B
    Proteins; 2018 Sep; 86(9):935-944. PubMed ID: 29790608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force Field Benchmark of Amino Acids. 3. Hydration with Scaled Lennard-Jones Interactions.
    Qiu Y; Shan W; Zhang H
    J Chem Inf Model; 2021 Jul; 61(7):3571-3582. PubMed ID: 34185520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange-hole dipole moment and the dispersion interaction: high-order dispersion coefficients.
    Becke AD; Johnson ER
    J Chem Phys; 2006 Jan; 124(1):14104. PubMed ID: 16409021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating nonpolarizable nucleic acid force fields: a systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients.
    Wolf MG; Groenhof G
    J Comput Chem; 2012 Oct; 33(28):2225-32. PubMed ID: 22782700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Many-body dispersion interactions from the exchange-hole dipole moment model.
    Otero-de-la-Roza A; Johnson ER
    J Chem Phys; 2013 Feb; 138(5):054103. PubMed ID: 23406094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing AMBER force fields for protein folding in an implicit solvent.
    Shao Q; Zhu W
    Phys Chem Chem Phys; 2018 Mar; 20(10):7206-7216. PubMed ID: 29480910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying the OPLS-AA force field to improve hydration free energies for several amino acid side chains using new atomic charges and an off-plane charge model for aromatic residues.
    Xu Z; Luo HH; Tieleman DP
    J Comput Chem; 2007 Feb; 28(3):689-97. PubMed ID: 17195160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Many-body dispersion in model systems and the sensitivity of self-consistent screening.
    Bryenton KR; Johnson ER
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37218696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the reliability of the AMBER force field and its empirical dispersion contribution for the description of noncovalent complexes.
    Kolár M; Berka K; Jurecka P; Hobza P
    Chemphyschem; 2010 Aug; 11(11):2399-408. PubMed ID: 20629063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals.
    Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD
    J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exchange-hole dipole moment and the dispersion interaction revisited.
    Becke AD; Johnson ER
    J Chem Phys; 2007 Oct; 127(15):154108. PubMed ID: 17949133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model.
    Visscher KM; Geerke DP
    J Chem Theory Comput; 2019 Mar; 15(3):1875-1883. PubMed ID: 30763086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of the Generalized Force Fields GAFF, CGenFF, OPLS-AA, and PRODRGFF by Testing Against Experimental Osmotic Coefficient Data for Small Drug-Like Molecules.
    Zhu S
    J Chem Inf Model; 2019 Oct; 59(10):4239-4247. PubMed ID: 31557024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Modeling of Halogenated Ligand-Protein Interactions Using the Drude Polarizable and CHARMM Additive Empirical Force Fields.
    Lin FY; MacKerell AD
    J Chem Inf Model; 2019 Jan; 59(1):215-228. PubMed ID: 30418023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.