BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29877754)

  • 1. Increased foot-stretcher height improves rowing performance: evidence from biomechanical perspectives on water.
    Liu Y; Gao B; Li J; Ma Z; Sun Y
    Sports Biomech; 2020 Apr; 19(2):168-179. PubMed ID: 29877754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of foot-stretcher height on rowing technique and performance.
    Buckeridge EM; Weinert-Aplin RA; Bull AM; McGregor AH
    Sports Biomech; 2016 Nov; 15(4):513-26. PubMed ID: 27256844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of stretcher height on the mechanical effectiveness of rowing.
    Caplan N; Gardner TN
    J Appl Biomech; 2005 Aug; 21(3):286-96. PubMed ID: 16260848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force coordination strategies in on-water single sculling: Are asymmetries related to better rowing performance?
    Warmenhoven J; Smith R; Draper C; Harrison AJ; Bargary N; Cobley S
    Scand J Med Sci Sports; 2018 Apr; 28(4):1379-1388. PubMed ID: 29222948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved determination of mechanical power output in rowing: Experimental results.
    Lintmeijer LL; Hofmijster MJ; Schulte Fischedick GA; Zijlstra PJ; Van Soest AJK
    J Sports Sci; 2018 Sep; 36(18):2138-2146. PubMed ID: 29737929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How gender and boat-side affect shape characteristics of force-angle profiles in single sculling: Insights from functional data analysis.
    Warmenhoven J; Cobley S; Draper C; Harrison A; Bargary N; Smith R
    J Sci Med Sport; 2018 May; 21(5):533-537. PubMed ID: 28958487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of foot-stretcher position and stroke rate on ergometer rowing kinematics.
    Engstrom I; Anderson K; Bez E; Agresta C; Telfer S
    PLoS One; 2023; 18(5):e0285676. PubMed ID: 37167317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of propulsive pin force and oar angle time-series using functional data analysis in on-water rowing.
    Warmenhoven J; Cobley S; Draper C; Harrison AJ; Bargary N; Smith R
    Scand J Med Sci Sports; 2017 Dec; 27(12):1688-1696. PubMed ID: 28263414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Textured insoles affect the plantar pressure distribution while elite rowers perform on an indoor rowing machine.
    Vieira T; Botter A; Gastaldi L; Sacco ICN; Martelli F; Giacomozzi C
    PLoS One; 2017; 12(11):e0187202. PubMed ID: 29095908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strapping rowers to their sliding seat improves performance during the start of single-scull rowing.
    van Soest AJ; de Koning H; Hofmijster MJ
    J Sports Sci; 2016 Sep; 34(17):1643-9. PubMed ID: 26758804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rocking the boat: does perfect rowing crew synchronization reduce detrimental boat movements?
    Cuijpers LS; Passos PJM; Murgia A; Hoogerheide A; Lemmink KAPM; de Poel HJ
    Scand J Med Sci Sports; 2017 Dec; 27(12):1697-1704. PubMed ID: 27882632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of fluctuations in boat velocity during the rowing cycle on race time.
    Hill H; Fahrig S
    Scand J Med Sci Sports; 2009 Aug; 19(4):585-94. PubMed ID: 18510593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between measures of boat acceleration and performance in rowing, with and without controlling for stroke rate and power output.
    Holt AC; Ball K; Siegel R; Hopkins WG; Aughey RJ
    PLoS One; 2021; 16(8):e0249122. PubMed ID: 34415922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in mechanical power output in rowing by varying stroke rate and gearing.
    Held S; Siebert T; Donath L
    Eur J Sport Sci; 2020 Apr; 20(3):357-365. PubMed ID: 31232195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Rowing Ergometer Compliance on Biomechanical and Physiological Indicators during Simulated 2,000-metre Race.
    Šarabon N; Kozinc Ž; Babič J; Marković G
    J Sports Sci Med; 2019 Jun; 18(2):264-270. PubMed ID: 31191096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive smartphone-based sensor fusion for estimating competitive rowing kinematic metrics.
    Cloud B; Tarien B; Liu A; Shedd T; Lin X; Hubbard M; Crawford RP; Moore JK
    PLoS One; 2019; 14(12):e0225690. PubMed ID: 31805092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Wireless Rowing Measurement System for Improving the Rowing Performance of Athletes.
    Hohmuth R; Schwensow D; Malberg H; Schmidt M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body Motion and Rowing Performance: Association between Hip Angle and Rowing Performance: A Pilot Study.
    Fumoto M; Sera Y; Azuma K; Sato K; Matsumoto H
    Keio J Med; 2020 Sep; 69(3):66-75. PubMed ID: 31969524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical power output in rowing should not be determined from oar forces and oar motion alone.
    Hofmijster MJ; Lintmeijer LL; Beek PJ; van Soest AJK
    J Sports Sci; 2018 Sep; 36(18):2147-2153. PubMed ID: 29737945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of acoustic feedback training in elite-standard Para-Rowing.
    Schaffert N; Mattes K
    J Sports Sci; 2015; 33(4):411-8. PubMed ID: 25105858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.