These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29877798)

  • 1. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA.
    Knappenberger AJ; Reiss CW; Strobel SA
    Elife; 2018 Jun; 7():. PubMed ID: 29877798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Modular RNA Domain That Confers Differential Ligand Specificity.
    Knappenberger AJ; Reiss CW; Focht CM; Strobel SA
    Biochemistry; 2020 Apr; 59(13):1361-1366. PubMed ID: 32202416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variant Bacterial Riboswitches Associated with Nucleotide Hydrolase Genes Sense Nucleoside Diphosphates.
    Sherlock ME; Sadeeshkumar H; Breaker RR
    Biochemistry; 2019 Feb; 58(5):401-410. PubMed ID: 30081631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An uncommon [K
    Trachman RJ; Ferré-D'Amaré AR
    RNA; 2021 Oct; 27(10):1257-1264. PubMed ID: 34257148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Malkowski SN; Breaker RR
    Biochemistry; 2017 Jan; 56(2):352-358. PubMed ID: 28001368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis for Ligand Binding to the Guanidine-I Riboswitch.
    Reiss CW; Xiong Y; Strobel SA
    Structure; 2017 Jan; 25(1):195-202. PubMed ID: 28017522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Breaker RR
    Biochemistry; 2017 Jan; 56(2):359-363. PubMed ID: 28001372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics.
    Zhang Q; Kang M; Peterson RD; Feigon J
    J Am Chem Soc; 2011 Apr; 133(14):5190-3. PubMed ID: 21410253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for guanidine sensing by the
    Battaglia RA; Price IR; Ke A
    RNA; 2017 Apr; 23(4):578-585. PubMed ID: 28096518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria.
    Salvail H; Balaji A; Yu D; Roth A; Breaker RR
    Biochemistry; 2020 Dec; 59(49):4654-4662. PubMed ID: 33236895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ykkC riboswitches employ an add-on helix to adjust specificity for polyanionic ligands.
    Peselis A; Serganov A
    Nat Chem Biol; 2018 Sep; 14(9):887-894. PubMed ID: 30120360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.
    Stagno JR; Liu Y; Bhandari YR; Conrad CE; Panja S; Swain M; Fan L; Nelson G; Li C; Wendel DR; White TA; Coe JD; Wiedorn MO; Knoska J; Oberthuer D; Tuckey RA; Yu P; Dyba M; Tarasov SG; Weierstall U; Grant TD; Schwieters CD; Zhang J; Ferré-D'Amaré AR; Fromme P; Draper DE; Liang M; Hunter MS; Boutet S; Tan K; Zuo X; Ji X; Barty A; Zatsepin NA; Chapman HN; Spence JC; Woodson SA; Wang YX
    Nature; 2017 Jan; 541(7636):242-246. PubMed ID: 27841871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems.
    Sherlock ME; Sudarsan N; Breaker RR
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6052-6057. PubMed ID: 29784782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of RNA binding sites for (p)ppGpp using RNA-DRaCALA.
    Jagodnik J; Tjaden B; Ross W; Gourse RL
    Nucleic Acids Res; 2023 Jan; 51(2):852-869. PubMed ID: 36617997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pairing interactions between nucleobases and ligands in aptamer:ligand complexes of riboswitches: crystal structure analysis, classification, optimal structures, and accurate interaction energies.
    Seelam PP; Mitra A; Sharma P
    RNA; 2019 Oct; 25(10):1274-1290. PubMed ID: 31315914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.