These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29877844)

  • 21. Novel Method for Predicting Dexterous Individual Finger Movements by Imaging Muscle Activity Using a Wearable Ultrasonic System.
    Sikdar S; Rangwala H; Eastlake EB; Hunt IA; Nelson AJ; Devanathan J; Shin A; Pancrazio JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):69-76. PubMed ID: 23996580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals.
    Purushothaman G; Vikas R
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):549-559. PubMed ID: 29744809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Cost Wearable Band Sensors of Surface Electromyography for Detecting Hand Movements.
    Gomez-Correa M; Cruz-Ortiz D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards identification of finger flexions using single channel surface electromyography--able bodied and amputee subjects.
    Kumar DK; Poosapadi Arjunan S; Singh VP
    J Neuroeng Rehabil; 2013 Jun; 10():50. PubMed ID: 23758881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wrist and Finger Gesture Recognition With Single-Element Ultrasound Signals: A Comparison With Single-Channel Surface Electromyogram.
    He J; Luo H; Jia J; Yeow JTW; Jiang N
    IEEE Trans Biomed Eng; 2019 May; 66(5):1277-1284. PubMed ID: 30281423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Wearable Finger-Tapping Motion Recognition System Using Biodegradable Piezoelectric Film Sensors.
    Jomyo S; Furui A; Matsumoto T; Tsunoda T; Tsuji T
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6982-6986. PubMed ID: 34892710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.
    Benatti S; Milosevic B; Farella E; Gruppioni E; Benini L
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sparsity Analysis of a Sonomyographic Muscle-Computer Interface.
    Akhlaghi N; Dhawan A; Khan AA; Mukherjee B; Diao G; Truong C; Sikdar S
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):688-696. PubMed ID: 31150331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative analysis of three non-invasive human-machine interfaces for the disabled.
    Ravindra V; Castellini C
    Front Neurorobot; 2014; 8():24. PubMed ID: 25386135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time continuous recognition of knee motion using multi-channel mechanomyography signals detected on clothes.
    Wu H; Wang D; Huang Q; Gao L
    J Electromyogr Kinesiol; 2018 Feb; 38():94-102. PubMed ID: 29182965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental evaluation of a sEMG-based control for elbow wearable assistive devices during load lifting tasks.
    Meattini R; Palli G; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():140-145. PubMed ID: 28813808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle Activation and Inertial Motion Data for Noninvasive Classification of Activities of Daily Living.
    Totty MS; Wade E
    IEEE Trans Biomed Eng; 2018 May; 65(5):1069-1076. PubMed ID: 28809669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward direct biocontrol using surface EMG signals: control of finger and wrist joint models.
    Reddy NP; Gupta V
    Med Eng Phys; 2007 Apr; 29(3):398-403. PubMed ID: 16682244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound Evaluation of the Transverse Movement of the Flexor Pollicis Longus Tendon on the Distal Radius during Wrist and Finger Motion in Healthy Volunteers.
    Nanno M; Sawaizumi T; Kodera N; Tomori Y; Takai S
    J Nippon Med Sch; 2015; 82(5):220-8. PubMed ID: 26568388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task.
    Crouch DL; Huang HH
    J Neural Eng; 2017 Jun; 14(3):036008. PubMed ID: 28220759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous Prediction of Wrist/Hand Motion via Wearable Ultrasound Sensing.
    Yang X; Yan J; Fang Y; Zhou D; Liu H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):970-977. PubMed ID: 32142449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of finger postures to control a maniform device for playing a trumpet using electromyographic signals with external triggers.
    Kobayashi Y; Fukayama O; Suzuki T; Mabuchi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5847-50. PubMed ID: 21096921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PCA and deep learning based myoelectric grasping control of a prosthetic hand.
    Li C; Ren J; Huang H; Wang B; Zhu Y; Hu H
    Biomed Eng Online; 2018 Aug; 17(1):107. PubMed ID: 30081927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.