BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29877846)

  • 1. Development of Three Versions of a Wheelchair Ergometer for Curvilinear Manual Wheelchair Propulsion Using Virtual Reality.
    Salimi Z; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1215-1222. PubMed ID: 29877846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Reliability and Validity of Three Novel Virtual Reality Environments With Different Approaches to Simulate Wheelchair Maneuvers.
    Salimi Z; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):514-522. PubMed ID: 30716041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring Handrim Wheelchair Propulsion in the Lab: A Critical Analysis of Stationary Ergometers.
    de Klerk R; Vegter RJK; Goosey-Tolfrey VL; Mason BS; Lenton JP; Veeger DHEJ; van der Woude LHV
    IEEE Rev Biomed Eng; 2020; 13():199-211. PubMed ID: 31675342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented feedback for manual wheelchair propulsion technique training in a virtual reality simulator.
    Yan H; Archambault PS
    J Neuroeng Rehabil; 2021 Sep; 18(1):142. PubMed ID: 34548085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new dynamic model of the manual wheelchair for straight and curvilinear propulsion.
    Chénier F; Bigras P; Aissaoui R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975357. PubMed ID: 22275561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Wheelchair Propulsion Performance in an Immersive Virtual Reality Simulator.
    Yang YS; Koontz AM; Hsiao YH; Pan CT; Chang JJ
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories.
    Misch J; Huang M; Sprigle S
    PLoS One; 2020; 15(6):e0234742. PubMed ID: 32555594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical Note: A Novel Servo-Driven Dual-Roller Handrim Wheelchair Ergometer.
    de Klerk R; Vegter RJK; Veeger HEJ; van der Woude LHV
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):953-960. PubMed ID: 32070986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in inertia and effect on turning effort across different wheelchair configurations.
    Caspall JJ; Seligsohn E; Dao PV; Sprigle S
    J Rehabil Res Dev; 2013; 50(10):1353-62. PubMed ID: 24699971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computerized wheelchair ergometer. Results of a comparison study.
    Veeger HE; van der Woude LH; Rozendal RH
    Scand J Rehabil Med; 1992; 24(1):17-23. PubMed ID: 1604258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Usability of a virtual reality manual wheelchair simulator.
    Chaar F; Archambault PS
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1489-1499. PubMed ID: 35175178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Portable Low-Cost System for the Metrological Verification of Wheelchair Roller Ergometers.
    Lancini M; Spada P; Muhametaj R; Klerk R; van der Woude LHV; Vegter RJK
    J Biomech Eng; 2023 Oct; 145(10):. PubMed ID: 37345978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new dynamic model of the wheelchair propulsion on straight and curvilinear level-ground paths.
    Chénier F; Bigras P; Aissaoui R
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(10):1031-1043. PubMed ID: 24484386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics.
    Symonds A; Barbareschi G; Taylor S; Holloway C
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):47-53. PubMed ID: 28102100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
    Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of an instrumented wheelchair propulsion testing and training device.
    Klaesner J; Morgan KA; Gray DB
    Assist Technol; 2014; 26(1):24-32. PubMed ID: 24800451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptations in physiology and propulsion techniques during the initial phase of learning manual wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Am J Phys Med Rehabil; 2003 Jul; 82(7):504-10. PubMed ID: 12819537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between resultant force at the pushrim and the net shoulder joint moments during manual wheelchair propulsion in elderly persons.
    Desroches G; Aissaoui R; Bourbonnais D
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1155-61. PubMed ID: 18503814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study.
    Morgan KA; Tucker SM; Klaesner JW; Engsberg JR
    J Spinal Cord Med; 2017 May; 40(3):304-315. PubMed ID: 26674751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shoulder joint kinetics during the push phase of wheelchair propulsion.
    Kulig K; Rao SS; Mulroy SJ; Newsam CJ; Gronley JK; Bontrager EL; Perry J
    Clin Orthop Relat Res; 1998 Sep; (354):132-43. PubMed ID: 9755772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.