These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 29878050)

  • 1. Detection of multi-dimensional co-exclusion patterns in microbial communities.
    Albayrak L; Khanipov K; Golovko G; Fofanov Y
    Bioinformatics; 2018 Nov; 34(21):3695-3701. PubMed ID: 29878050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of multidimensional Boolean patterns in microbial communities.
    Golovko G; Kamil K; Albayrak L; Nia AM; Duarte RSA; Chumakov S; Fofanov Y
    Microbiome; 2020 Sep; 8(1):131. PubMed ID: 32917276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances.
    Tang ZZ; Chen G; Alekseyenko AV
    Bioinformatics; 2016 Sep; 32(17):2618-25. PubMed ID: 27197815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting microbiomes through a deep latent space.
    García-Jiménez B; Muñoz J; Cabello S; Medina J; Wilkinson MD
    Bioinformatics; 2021 Jun; 37(10):1444-1451. PubMed ID: 33289510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An algorithm for designing minimal microbial communities with desired metabolic capacities.
    Eng A; Borenstein E
    Bioinformatics; 2016 Jul; 32(13):2008-16. PubMed ID: 27153571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FLYCOP: metabolic modeling-based analysis and engineering microbial communities.
    García-Jiménez B; García JL; Nogales J
    Bioinformatics; 2018 Sep; 34(17):i954-i963. PubMed ID: 30423096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of association networks in food bacterial communities.
    Parente E; Zotta T; Faust K; De Filippis F; Ercolini D
    Food Microbiol; 2018 Aug; 73():49-60. PubMed ID: 29526226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CCLasso: correlation inference for compositional data through Lasso.
    Fang H; Huang C; Zhao H; Deng M
    Bioinformatics; 2015 Oct; 31(19):3172-80. PubMed ID: 26048598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general framework for association analysis of microbial communities on a taxonomic tree.
    Tang ZZ; Chen G; Alekseyenko AV; Li H
    Bioinformatics; 2017 May; 33(9):1278-1285. PubMed ID: 28003264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks.
    van Veelen HPJ; Falcao Salles J; Tieleman BI
    Microbiome; 2017 Dec; 5(1):156. PubMed ID: 29191217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the accuracy of amplicon-based microbiome computational pipelines on simulated human gut microbial communities.
    Golob JL; Margolis E; Hoffman NG; Fredricks DN
    BMC Bioinformatics; 2017 May; 18(1):283. PubMed ID: 28558684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of multivariable Boolean patterns in microbiome and microbial gene composition data.
    Golovko G; Khanipov K; Reyes V; Pinchuk I; Fofanov Y
    Biosystems; 2023 Nov; 233():105007. PubMed ID: 37619924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of co-occurrence patterns in microbial presence-absence datasets.
    Mainali KP; Bewick S; Thielen P; Mehoke T; Breitwieser FP; Paudel S; Adhikari A; Wolfe J; Slud EV; Karig D; Fagan WF
    PLoS One; 2017; 12(11):e0187132. PubMed ID: 29145425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetaCoMET: a web platform for discovery and visualization of the core microbiome.
    Wang Y; Xu L; Gu YQ; Coleman-Derr D
    Bioinformatics; 2016 Nov; 32(22):3469-3470. PubMed ID: 27485442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDiNE: a model to estimate differential co-occurrence networks in microbiome studies.
    McGregor K; Labbe A; Greenwood CMT
    Bioinformatics; 2020 Mar; 36(6):1840-1847. PubMed ID: 31697315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data.
    Chen EZ; Li H
    Bioinformatics; 2016 Sep; 32(17):2611-7. PubMed ID: 27187200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. metaBIT, an integrative and automated metagenomic pipeline for analysing microbial profiles from high-throughput sequencing shotgun data.
    Louvel G; Der Sarkissian C; Hanghøj K; Orlando L
    Mol Ecol Resour; 2016 Nov; 16(6):1415-1427. PubMed ID: 27238636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using null models to infer microbial co-occurrence networks.
    Connor N; Barberán A; Clauset A
    PLoS One; 2017; 12(5):e0176751. PubMed ID: 28493918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using standard microbiome reference groups to simplify beta-diversity analyses and facilitate independent validation.
    Maziarz M; Pfeiffer RM; Wan Y; Gail MH
    Bioinformatics; 2018 Oct; 34(19):3249-3257. PubMed ID: 29668831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions.
    Zakrzewski M; Proietti C; Ellis JJ; Hasan S; Brion MJ; Berger B; Krause L
    Bioinformatics; 2017 Mar; 33(5):782-783. PubMed ID: 28025202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.